數學歸納法證明的步驟

來源:才華庫 1.33W

數學歸納法是一種數學證明方法,通常被用於證明某個給定命題在整個(或者區域性)自然數範圍內成立。以下是小編精心準備的數學歸納法證明的步驟,大家可以參考以下內容哦!

數學歸納法證明的步驟

基本步驟

(一)第一數學歸納法:

一般地,證明一個與自然數n有關的命題P(n),有如下步驟:

(1)證明當n取第一個值n0時命題成立.n0對於一般數列取值為0或1,但也有特殊情況;

(2)假設當n=k(k≥n0,k為自然數)時命題成立,證明當n=k+1時命題也成立.

綜合(1)(2),對一切自然數n(≥n0),命題P(n)都成立.

(二)第二數學歸納法:

對於某個與自然數有關的命題P(n),

(1)驗證n=n0時P(n)成立;

(2)假設n0≤nn0)成立,能推出Q(k)成立,假設 Q(k)成立,能推出 P(k+1)成立;

綜合(1)(2),對一切自然數n(≥n0),P(n),Q(n)都成立.

原理

最簡單和常見的數學歸納法是證明當n等於任意一個自然數時某命題成立。證明分下面兩步:

證明當n= 1時命題成立。

假設n=m時命題成立,那麼可以推匯出在n=m+1時命題也成立。(m代表任意自然數)

這種方法的原理在於:首先證明在某個起點值時命題成立,然後證明從一個值到下一個值的過程有效。當這兩點都已經證明,那麼任意值都可以通過反覆使用這個方法推匯出來。把這個方法想成多米諾效應也許更容易理解一些。例如:你有一列很長的直立著的多米諾骨牌,如果你可以:

證明第一張骨牌會倒。

證明只要任意一張骨牌倒了,那麼與其相鄰的下一張骨牌也會倒。

解題要點

數學歸納法對解題的形式要求嚴格,數學歸納法解題過程中,

第一步:驗證n取第一個自然數時成立

第二步:假設n=k時成立,然後以驗證的條件和假設的條件作為論證的依據進行推導,在接下來的推導過程中不能直接將n=k+1代入假設的原式中去。

最後一步總結表述。

需要強調是數學歸納法的兩步都很重要,缺一不可,否則可能得到下面的荒謬證明:

證明1:所有的馬都是一種顏色

首先,第一步,這個命題對n=1時成立,即,只有1匹馬時,馬的顏色只有一種。

第二步,假設這個命題對n成立,即假設任何n匹馬都是一種顏色。那麼當我們有n+1匹馬時,不妨把它們編好號:

1, 2, 3……n, n+1

對其中(1、2……n)這些馬,由我們的假設可以得到,它們都是同一種顏色;

對(2、3……n、n+1)這些馬,我們也可以得到它們是一種顏色;

由於這兩組中都有(2、3、……n)這些馬,所以可以得到,這n+1種馬都是同一種顏色。

這個證明的.錯誤來於推理的第二步:當n=1時,n+1=2,此時馬的編號只有1、2,那麼分的兩組是(1)和(2)——它們沒有交集,所以第二步的推論是錯誤的。數學歸納法第二步要求n→n+1過程對n=1,2,3……的數都成立,而上面的證明就好比多米諾骨牌的第一塊和第二塊之間間隔太大,推倒了第一塊,但它不會推倒第二塊。即使我們知道第二塊倒下會推倒第三塊等等,但這個過程早已在第一和第二塊之間就中斷了。

證明2:舉例證明下面的定理

——等差數列求和公式

第一步,驗證該公式在 n = 1 時成立。即有左邊=1,右邊=

=1,所以這個公式在n = 1時成立。

第二步,需要證明假設n = m 時公式成立,那麼可以推匯出n = m+1 時公式也成立。步驟如下:

假設n = m 時公式成立,即

(等式1)

然後在等式兩邊同時分別加上m + 1 得到

(等式2)

這就是n = m+1 時的等式。我們下一步需要根據 等式1證明 等式2 成立。通過因式分解合併,等式2的右邊

也就是

這樣我們就完成了由n=m成立推匯出n=m+1成立的過程,證畢。

結論:對於任意自然數n,公式均成立。

對於以上例2的分析

在這個證明中,歸納的過程如下:

首先證明n=1成立。

然後證明從n=m 成立可以推匯出n=m+1 也成立(這裡實際應用的是演繹推理)。

根據上兩條從n=1 成立可以推匯出n=1+1,也就是n=2 成立。

繼續推導,可以知道n=3 成立。

從 n=3 成立可以推匯出n=4 也成立……

不斷重複3的推導過程(這就是所謂“歸納”推理的地方)。

我們便可以下結論:對於任意非零自然數n,公式成立。

熱門標籤