高中物理知識點總結(精選13篇)

來源:才華庫 2.56W

高中物理知識點總結

一、什麼是總結

總結:是指對某一階段的工作、學習或思想中的經驗或情況進行分析研究,做出帶有規律性的結論。

二、高中物理知識點總結

在我們上學期間,大家最熟悉的就是知識點吧?知識點就是學習的重點。想要一份整理好的知識點嗎?下面是小編幫大家整理的高中物理知識點總結(精選13篇),僅供參考,大家一起來看看吧。

高中物理知識點總結1

一、運動的描述

1.物體模型用質點,忽略形狀和大小;地球公轉當質點,地球自轉要大小。物體位置的變化,準確描述用位移,運動快慢s比t,a用δv與t比。

2.運用一般公式法,平均速度是簡法,中間時刻速度法,初速度零比例法,再加幾何影象法,求解運動好方法。自由落體是例項,初速為零a等g.豎直上拋知初速,上升最高心有數,飛行時間上下回,整個過程勻減速。中心時刻的速度,平均速度相等數;求加速度有好方,δs等at平方。

3.速度決定物體動,速度加速度方向中,同向加速反向減,垂直拐彎莫前衝。

二、力

1.解力學題堡壘堅,受力分析是關鍵;分析受力性質力,根據效果來處理。

2.分析受力要仔細,定量計算七種力;重力有無看

提示,根據狀態定彈力;先有彈力後摩擦,相對運動是依據;萬有引力在萬物,電場力存在定無疑;洛侖茲力安培力,二者實質是統一;相互垂直力最大,平行無力要切記。

3.同一直線定方向,計算結果只是“量”,某量方向若未定,計算結果給指明;兩力合力小和大,兩個力成q角夾,平行四邊形定法;合力大小隨q變,只在最大最小間,多力合力合另邊。

多力問題狀態揭,正交分解來解決,三角函式能化解。

4.力學問題方法多,整體隔離和假設;整體只需看外力,求解內力隔離做;狀態相同用整體,否則隔離用得多;即使狀態不相同,整體牛二也可做;假設某力有或無,根據計算來定奪;極限法抓臨界態,程式法按順序做;正交分解選座標,軸上向量儘量多。

三、牛頓運動定律

1.f等ma,牛頓二定律,產生加速度,原因就是力。

合力與a同方向,速度變數定a向,a變小則u可大,只要a與u同向。

2.n、t等力是視重,mg乘積是實重;超重失重視視重,其中不變是實重;加速上升是超重,減速下降也超重;失重由加降減升定,完全失重視重零

四、曲線運動、萬有引力

1.運動軌跡為曲線,向心力存在是條件,曲線運動速度變,方向就是該點切線。

2.圓周運動向心力,供需關係在心裡,徑向合力提供足,需mu平方比r,mrw平方也需,供求平衡不心離。

3.萬有引力因質量生,存在於世界萬物中,皆因天體質量大,萬有引力顯神通。衛星繞著天體行,快慢運動的衛星,均由距離來決定,距離越近它越快,距離越遠越慢行,同步衛星速度定,定點赤道上空行。

五、機械能與能量

1.確定狀態找動能,分析過程找力功,正功負功加一起,動能增量與它同。

2.明確兩態機械能,再看過程力做功,“重力”之外功為零,初態末態能量同。

3.確定狀態找量能,再看過程力做功。有功就有能轉變,初態末態能量同。

六、電場

1.庫侖定律電荷力,萬有引力引場力,好像是孿生兄弟,kqq與r平方比。

2.電荷周圍有電場,f比q定義場強。kq比r2點電荷,u比d是勻強電場。

電場強度是向量,正電荷受力定方向。描繪電場用場線,疏密表示弱和強。

場能性質是電勢,場線方向電勢降。場力做功是qu,動能定理不能忘。

4.電場中有等勢面,與它垂直畫場線。方向由高指向低,面密線密是特點。

七、恆定電流

1.電荷定向移動時,電流等於q比t。自由電荷是內因,兩端電壓是條件。

正荷流向定方向,串電流表來計量。電源外部正流負,從負到正經內部。

2.電阻定律三因素,溫度不變才得出,控制變數來論述,rl比s等電阻。

電流做功uit,電熱i平方rt。電功率,w比t,電壓乘電流也是。

3.基本電路聯串並,分壓分流要分明。複雜電路動腦筋,等效電路是關鍵。

4.閉合電路部分路,外電路和內電路,遵循定律屬歐姆。

路端電壓內壓降,和就等電動勢,除於總阻電流是。

八、磁場

1.磁體周圍有磁場,n極受力定方向;電流周圍有磁場,安培定則定方向。

2.f比il是場強,φ等bs磁通量,磁通密度φ比s,磁場強度之名異。

安培力,相互垂直要注意。

4.洛侖茲力安培力,力往左甩別忘記。

九、電磁感應

1.電磁感應磁生電,磁通變化是條件。迴路閉合有電流,迴路斷開是電源。

感應電動勢大小,磁通變化率知曉。

2.楞次定律定方向,阻礙變化是關鍵。導體切割磁感線,右手定則更方便。

3.楞次定律是抽象,真正理解從三方,阻礙磁通增和減,相對運動受反抗,自感電流想阻擋,能量守恆理應當。楞次先看原磁場,感生磁場將何向,全看磁通增或減,安培定則知i向。

十、交流電

1.勻強磁場有線圈,旋轉產生交流電。電流電壓電動勢,變化規律是絃線。

中性面計時是正弦,平行面計時是餘弦。

ω是最大值,有效值用熱量來計算。

3.變壓器供交流用,恆定電流不能用。

理想變壓器,初級ui值,次級ui值,相等是原理。

電壓之比值,正比匝數比;電流之比值,反比匝數比。

運用變壓比,若求某匝數,化為匝伏比,方便地算出。

遠距輸電用,升壓降流送,否則耗損大,使用者後降壓。

十一、氣態方程

研究氣體定質量,確定狀態找參量。絕對溫度用大t,體積就是容積量。

壓強分析封閉物,牛頓定律幫你忙。狀態參量要找準,pv比t是恆量。

十二、熱力學定律

1.第一定律熱力學,能量守恆好感覺。內能變化等多少,熱量做功不能少。

正負符號要準確,收入支出來理解。對內做功和吸熱,內能增加皆正值;對外做功和放熱,內能減少皆負值。

2.熱力學第二定律,熱傳遞是不可逆,功轉熱和熱轉功,具有方向性不逆。

十三、機械振動

1.簡諧振動要牢記,o為起點算位移,回覆力的方向指,始終向平衡位置,

大小正比於位移,平衡位置u大極。

2.o點對稱別忘記,振動強弱是振幅,振動快慢是週期,一週期走4a路,單擺週期l比g,再開方根乘2p,秒擺週期為2秒,擺長約等長1米。

到質心擺長行,單擺具有等時性。

3.振動影象描方向,從底往頂是向上,從頂往底是下向;振動影象描位移,頂點底點大位移,正負符號方向指。

十四、機械波

1.左行左坡上,右行右坡上。峰點谷點無方向。

2.順著傳播方向吧,從谷往峰想上爬,腳底總得往下蹬,上下振動遷不動。

3.不同時刻的影象,δt四分一或三,質點動向疑惑散,s等vt派用場。

十五、光學

1.自行發光是光源,同種均勻直線傳。若是遇見障礙物,傳播路徑要改變。

反射折射兩定律,折射定律是重點。光介質有折射率,(它的)定義是正弦比值,還可運用速度比,波長比值也使然。

2.全反射,要牢記,入射光線在光密。入射角大於臨界角,折射光線無處覓。

十六、物理光學

1.光是一種電磁波,能產生干涉和衍射。衍射有單縫和小孔,干涉有雙縫和薄膜。單縫衍射中間寬,干涉(條紋)間距差不多。小孔衍射明暗環,薄膜干涉用處多。它可用來測工件,還可製成增透膜。泊松亮斑是衍射,干涉公式要把握。〖選修3-4〗

2.光照金屬能生電,入射光線有極限。光電子動能大和小,與光子頻率有關聯。光電子數目多和少,與光線強弱緊相連。光電效應瞬間能發生,極限頻率取決逸出功。

十七、動量

1.確定狀態找動量,分析過程找衝量,同一直線定方向,計算結果只是“量”,某量方向若未定,計算結果給指明。

2.確定狀態找動量,分析過程找衝量,外力衝量若為零,初態末態動量同。

十八、原子原子核

1.原子核,中央站,電子分層圍它轉;向外躍遷為激發,輻射光子向內遷;光子能量hn,能級差值來計算。

2.原子核,能改變,αβ兩衰變。α粒是氦核,電子流是β射線。

γ光子不單有,伴隨衰變而出現。鈾核分開是裂變,中子撞擊是條件。

裂變可造原子彈,還可用它來發電。輕核聚合是聚變,溫度極高是條件。

變可以造氫彈,還是太陽能量源;和平利用前景好,可惜至今未實現。

高中物理知識點總結2

1、重力

由於地球的吸引而使物體受到的力叫做重力。物體受到的重力G與物體質量m的關係是G=mg,g稱為重力加速度或自由落體加速度,與物體所處位置的高低和緯度有關。重力的方向豎直向下,在南北極或赤道上指向地心。物體各部分受到重力的等效作用點叫做重心,重心位置與物體的形狀和質量分佈有關。

2、萬有引力

存在於自然界任何兩個物體之間的力。萬有引力F與兩個物體的質量m1 、m2和它們之間距離r的關係是,G稱為引力常量,適用於任何兩個物體,其大小通常取。 萬有引力的方向在兩物體的連線上。

3、彈力

發生彈性形變的物體,由於要恢復原狀而對與它接觸的物體產生的力。彈簧的彈力F與其形變數x之間的關係是F=kx,k稱為彈簧的勁度係數,單位為N/m,與彈簧的長短、粗細、材料和橫截面積等因素有關。彈力的方向與形變的方向相反。彈簧都有彈性限度,超過彈性限度後,前述力與形變數的關係不再成立。

4、靜摩擦力

兩個相互接觸的物體,當它們發生相對運動或具有相對運動的趨勢時,在接觸面產生阻礙相對運動或相對運動趨勢的力叫做摩擦力。當兩個物體間只有相對運動的趨勢,而沒有相對運動,這時的摩擦力叫做靜摩擦力。兩個物體間的靜摩擦力有一個限度,兩個物體剛剛開始相對運動時,它們之間的摩擦力稱為最大靜摩擦力。兩個物體間實際發生的靜摩擦力F在0和最大靜摩擦力Fmax之間。靜摩擦力的方向總是沿著接觸面,並且跟物體相對運動趨勢的方向相反。

5、滑動摩擦力

當一個物體在另一個物體表面滑動時,受到另一個物體阻礙它滑動的力。滑動摩擦力的大小跟壓力(兩個物體表面間的垂直作用力)成正比。滑動摩擦力f與壓力FN之間的關係是f=uFN,u稱為動摩擦因數,與相互接觸的兩個物體的材料、接觸面的情況有關。滑動摩擦力的方向總是沿著接觸面,並且跟物體的相對運動方向相反。

6、靜電力

靜止的點電荷之間的力。靜電力F與兩個點電荷q1、q2和它們之間的距離r的關係是,k稱為靜電力常量,其大小為。兩個點電荷帶同種電荷時,它們之間的作用力為斥力;兩個點電荷帶異種電荷時,它們之間的作用力為引力。靜電力也稱庫侖力。

7、電場力

試探電荷(帶電體)在電場中受到的力。電場力F與試探電荷的電荷量q之間的關係是F=Eq,E稱為電場強度,大小由電場本身決定,方向與正電荷所受電場力的方向相同,其單位為N/C。

8、安培力

通電導線在磁場中受到的力。當直導線與勻強磁場方向垂直時,導線所受安培力F與導線中電流強度I,導線的長度L,磁感應強度B之間的關係是F=BIL。安培力的方向可由左手定則確定。

9、洛倫茲力

帶電粒子在磁場中運動時受到的力。當粒子運動的方向與磁感應強度方向垂直時,粒子所受的洛倫茲力與粒子的電荷量q,粒子運動的速度v,磁感應強度B之間的關係是F=qvB。安培力的方向可由左手定則確定。安培力是大量帶電粒子所受洛倫茲力的巨集觀表現。

10、分子力

存在於分子間的作用力。分子力比較複雜,分子間同時存在著引力和斥力,當分子間距離為r0時,引力與斥力的合力為0,當r>r0時合力表現為引力,r<r0當時合力表現為斥力,分子間的引力和斥力都隨分子間距離的增大而減小。< p="">

11、核力

存在於原子核核心子之間的一種力。核力是強相互作用的一種表現,在原子核尺度內,核力比庫侖力大的多;核力是短程力,作用範圍在之內。

總結

重力的本質是萬有引力,是物體和地球之間萬有引力的具體化,若不考慮地球自轉的影響,地面上的物體所受的重力等於地球對物體的引力。彈力、摩擦力、靜電力、電場力、安培力、洛倫茲力的本質是電磁相互作用。核力是一種強相互作用。還有一種基本相互作用稱為弱相互作用,弱相互作用與放射現象有關。四種基本相互作用構築了力的體系。

高中物理知識點總結3

功、功率、機械能和能源

1.做功兩要素:力和物體在力的方向上發生位移

2.功:功是純量,只有大小,沒有方向,但有正功和負功之分,單位為焦耳(J)

3.物體做正功負功問題(將α理解為F與V所成的角,更為簡單)

(1)當α=90度時,W=0.這表示力F的方向跟位移的方向垂直時,力F不做功,

如小球在水平桌面上滾動,桌面對球的支援力不做功。

(2)當α<90度時,cosα>0,W>0.這表示力F對物體做正功。

如人用力推車前進時,人的推力F對車做正功。

(3)當α大於90度小於等於180度時,cosα<0,W<0.這表示力F對物體做負功。

如人用力阻礙車前進時,人的推力F對車做負功。

一個力對物體做負功,經常說成物體克服這個力做功(取絕對值)。

例如,豎直向上丟擲的球,在向上運動的過程中,重力對球做了-6J的功,可以說成球克服重力做了6J的功。說了“克服”,就不能再說做了負功

4.動能是純量,只有大小,沒有方向。表示式

5.重力勢能是純量,表示式

(1)重力勢能具有相對性,是相對於選取的參考面而言的。因此在計算重力勢能時,應該明確選取零勢面。

(2)重力勢能可正可負,在零勢面上方重力勢能為正值,在零勢面下方重力勢能為負值。

6.動能定理:

W為外力對物體所做的總功,m為物體質量,v為末速度,為初速度

解答思路:

①選取研究物件,明確它的運動過程。

②分析研究物件的受力情況和各力做功情況,然後求各個外力做功的代數和。

③明確物體在過程始末狀態的動能和。

④列出動能定理的方程。

7.機械能守恆定律:(只有重力或彈力做功,沒有任何外力做功。)

解題思路:

①選取研究物件----物體系或物體

②根據研究物件所經歷的物理過程,進行受力,做功分析,判斷機械能是否守恆。

③恰當地選取參考平面,確定研究物件在過程的初、末態時的機械能。

④根據機械能守恆定律列方程,進行求解。

8.功率的表示式:,或者P=FV功率:描述力對物體做功快慢;是純量,有正負

9.額定功率指機器正常工作時的最大輸出功率,也就是機器銘牌上的標稱值。

實際功率是指機器工作中實際輸出的功率。機器不一定都在額定功率下工作。實際功率總是小於或等於額定功率。

10、能量守恆定律及能量耗散

高中物理知識點總結4

重力勢能

1.電勢能的概念

(1)電勢能

電荷在電場中具有的勢能。

(2)電場力做功與電勢能變化的關係

在電場中移動電荷時電場力所做的功在數值上等於電荷電勢能的減少量,即WAB=εA-εB。

①當電場力做正功時,即WAB>0,則εA>εB,電勢能減少,電勢能的減少量等於電場力所做的功,即Δε減=WAB。

②當電場力做負功時,即WAB<0,則εA<εB,電勢能在增加,增加的電勢能等於電場力做功的絕對值,即Δε增=εB-εA=-WAB=|WAB|,但仍可以說電勢能在減少,只不過電勢能的減少量為負值,即ε減=εA-εB=WAB。

說明:某一物理過程中其物理量的增加量一定是該物理量的末狀態值減去其初狀態值,減少量一定是初狀態值減去末狀態值。

(3)零電勢能點

在電場中規定的任何電荷在該點電勢能為零的點。理論研究中通常取無限遠點為零電勢能點,實際應用中通常取大地為零電勢能點。

說明:①零電勢能點的選擇具有任意性。

②電勢能的數值具有相對性。

③某一電荷在電場中確定兩點間的電勢能之差與零電勢能點的選取無關。

2.電勢的概念

(1)定義及定義式

電場中某點的電荷的電勢能跟它的電量比值,叫做這一點的電勢。

(2)電勢的單位:伏(V)。

(3)電勢是純量。

(4)電勢是反映電場能的性質的物理量。

(5)零電勢點

規定的電勢能為零的點叫零電勢點。理論研究中,通常以無限遠點為零電勢點,實際研究中,通常取大地為零電勢點。

(6)電勢具有相對性

電勢的數值與零電勢點的選取有關,零電勢點的選取不同,同一點的電勢的數值則不同。

(7)順著電場線的方向電勢越來越低。電場強度的方向是電勢降低最快的方向。

(8)電勢能與電勢的關係:ε=qU。

高中物理知識點總結5

一.時間和時刻:

①時刻的定義:時刻是指某一瞬時,是時間軸上的一點,相對於位置、瞬時速度、等狀態量,一般說的“2秒末”,“速度2m/s”都是指時刻。

②時間的定義:時間是指兩個時刻之間的間隔,是時間軸上的一段,通常說的“幾秒內”,“第幾秒”都是指的時間。

二.位移和路程:

①位移的定義:位移表示質點在空間的位置變化,是向量。位移用又向線段表示,位移的大小等於又向線段的長度,位移的方向由初始位置指向末位置。

②路程的定義:路程是物體在空間運動軌跡的長度,是一個純量。在確定的兩點間路程不是確定的,它與物體的具體運動過程有關。

三.位移與路程的關係:

位移和路程是在一段時間內發生的,是過程量,兩者都和參考系的選取有關係。一般情況下位移的大小並不等於路程的大小。只有當物體做單方向的直線運動是兩者才相等。

1、時刻和時間間隔

(1)時刻和時間間隔可以在時間軸上表示出來。時間軸上的每一點都表示一個不同的時刻,時間軸上一段線段表示的是一段時間間隔(畫出一個時間軸加以說明)。

(2)在學校實驗室裡常用秒錶,電磁打點計時器或頻閃照相的方法測量時間。

2、路程和位移

(1)路程:質點實際運動軌跡的長度,它只有大小沒有方向,是純量。

(2)位移:是表示質點位置變動的物理量,有大小和方向,是向量。它是用一條自初始位置指向末位置的有向線段來表示,位移的大小等於質點始、末位置間的距離,位移的方向由初位置指向末位置,位移只取決於初、末位置,與運動路徑無關。

(3)位移和路程的區別:

(4)一般來說,位移的大小不等於路程。只有質點做方向不變的無往返的直線運動時位移大小才等於路程。

3、向量和純量

(1)向量:既有大小、又有方向的物理量。

(2)純量:只有大小,沒有方向的物理量。

4、直線運動的位置和位移:在直線運動中,兩點的位置座標之差值就表示物體的位移。

要想提高學習效率,首先要端正自己的學習態度.養成良好學習習慣,做好課前預習是學好物理的前提;主動高效地聽課是學好物理的關鍵;及時整理好學習筆記,課後的練習要到位,多做題才能豐富自己的解題經驗.

高中物理知識點總結6

第一章運動的描述

一、基本概念

1、質點

2、 參考系

3、座標系

4、時刻和時間間隔

5、路程:物體運動軌跡的長度

6、位移:表示物體位置的變動。可用從起點到末點的有向線段來表示,是向量。位移的大小小於或等於路程。

7、速度:

物理意義:表示物體位置變化的快慢程度。

分類平均速度:方向與位移方向相同

瞬時速度:

與速率的區別和聯絡速度是向量,而速率是純量

平均速度=位移/時間,平均速率=路程/時間

瞬時速度的大小等於瞬時速率

8、加速度

物理意義:表示物體速度變化的快慢程度

定義:(即等於速度的變化率)

方向:與速度變化量的方向相同,與速度的方向不確定。(或與合力的方向相同)

二、運動圖象(只研究直線運動)

1、x—t圖象(即位移圖象)

(1)、縱截距表示物體的初始位置。

(2)、傾斜直線表示物體作勻變速直線運動,水平直線表示物體靜止,曲線表示物體作變速直線運動。

(3)、斜率表示速度。斜率的絕對值表示速度的大小,斜率的正負表示速度的方向。

2、v—t圖象(速度圖象)

(1)、縱截距表示物體的初速度。

(2)、傾斜直線表示物體作勻變速直線運動,水平直線表示物體作勻速直線運動,曲線表示物體作變加速直線運動(加速度大小發生變化)。

(3)、縱座標表示速度。縱座標的絕對值表示速度的大小,縱座標的正負表示速度的方向。

(4)、斜率表示加速度。斜率的絕對值表示加速度的大小,斜率的正負表示加速度的方向。

(5)、面積表示位移。橫軸上方的面積表示正位移,橫軸下方的面積表示負位移。

三、實驗:用打點計時器測速度

1、兩種打點即使器的異同點

2、紙帶分析;

(1)、從紙帶上可直接判斷時間間隔,用刻度尺可以測量位移。

(2)、可計算出經過某點的瞬時速度

(3)、可計算出加速度

第二章勻變速直線運動的研究

一、基本關係式v=v0+at

x=v0t+1/2at2

v2-vo2=2ax

v=x/t=(v0+v)/2

二、推論

1、 vt/2=v=(v0+v)/2

2、vx/2=

3、x=at2 { xm-xn=(m-n)at2}

4、初速度為零的勻變速直線運動的比例式

應用基本關係式和推論時注意:

(1)、確定研究物件在哪個運動過程,並根據題意畫出示意圖。

(2)、求解運動學問題時一般都有多種解法,並探求最佳解法。

三、兩種運動特例

(1)、自由落體運動:v0=0 a=g v=gt h=1/2gt2 v2=2gh

(2)、豎直上拋運動;v0=0 a=-g

四、關於追及與相遇問題

1、尋找三個關係:時間關係,速度關係,位移關係。兩物體速度相等是兩物體有最大或最小距離的臨界條件。

2、處理方法:物理法,數學法,圖象法。

五、理解伽俐略科學研究過程的基本要素。

第三章相互作用

一、三種常見的力

1、重力:由於地球對物體的吸引而產生的。大小:G=mg,方向:豎直向下,

作用點:重心(重力的等效作用點)

2、彈力

(1)、形變、彈性形變、定義等。

(2)、產生條件:

(3)、拉力、支援力、壓力。(按照力的作用效果來命名的)

(4)、彈簧的彈力的大小和方向,胡克定律F=kx

(5)、可用假設法來判斷是否存在彈力。

3、摩擦力

(1)、靜摩擦力:①、產生條件②、方向判斷

③、大小要用“力的平衡”或“牛頓運動定律”來解。

(2)滑動摩擦力:①、產生條件②、方向判斷

③、大小:f=uN。也可用“力的平衡”或“牛頓運動定律”來解。

(3)、可用假設法來判斷是否存在摩擦力。

二、力的合成

1、定義;由分力求合力的過程。

2、合成法則:平行四邊形定則或三角形定則。

3、求合力的方法

①、作圖法(用刻度尺和量角器) ②、計演算法(通常是利用直角三角形)

2、合力與分力的大小關係

三、力的分解

1、分解法則:平行四邊形定則或三角形定則、

2、分解原則:按照實際作用效果分解(即已知兩分力的方向)

3、把一個已知力分解為兩個分力

①、已知兩個分力的方向,求兩個分力的大小。(解是唯一的)

②、已知一個分力的大小和方向,求另一個分力的大小和方向,(解是唯一的)

(注意:通過作平行四邊形或三角形判斷)

4、合力和分力是“等效替代”的關係。

三、實驗:探究求合力的方法(或“驗證平行四邊形定則”)

第四章牛頓運動定律

一、牛頓第一定律

1、內容:(揭示物體不受力或合力為零的情形)

2、兩個概念:①、力

②、慣性:(一切物體都具有慣性,質量是慣性大小的唯一量)

二、牛頓第二定律

1、內容:(不能從純數學的角度表述)

2、公式:F合=ma

3、理解牛頓第二定律的要點:

①、式中F是物體所受的一切外力的合力。②、向量性③、瞬時性

④、獨立性⑤、相對性

三、牛頓第三定律

作用力和反作用力的概念

1、內容

2、作用力和反作用力的特點:①等值、反向、共線、異點②瞬時對應③性質相同

④各自產生其作用效果

3、一對相互作用力與一對平衡力的異同點

四、力學單位制

1、力學基本物理量:長度(l)質量(m)時間(t)

力學基本單位:米(m)千克(kg)秒(s)

2、應用:用單位判斷結果表示式,能肯定錯誤(但不能肯定正確)

五、動力學的兩類問題。

1、已知物體的受力情況,求物體的運動情況(v0 v t x )

2、已知物體的運動情況,求物體的受力情況( F合或某個分力)

3、應用牛頓第二定律解決問題的一般思路

(1)明確研究物件。

(2)對研究物件進行受力情況分析,畫出受力示意圖。

(3)建立直角座標系,以初速度的方向或運動方向為正方向,與正方向相同的力為正,與正方向相反的力為負。在Y軸和X軸分別列牛頓第二定律的方程。

(4)解方程時,所有物理量都應統一單位,一般統一為國際單位。

4、分析兩類問題的基本方法

(1)抓住受力情況和運動情況之間聯絡的橋樑——加速度。

(2)分析流程圖

六、平衡狀態、平衡條件、推論

1、處理方法:解三角形法(合成法、分解法、相似三角形法、封閉三角形法)和正交分解法

2、若物體受三力平衡,封閉三角形法最簡捷。若物體受四力或四力以上平衡,用正交分解法

七、超重和失重

1、超重現象和失重現象

2、超重指加速度向上(加速上升和減速下降),超了ma;失重指加速度向下(加速下降和減速上升),失ma。

高中物理知識點總結7

力學部分:

1、基本概念:

力、合力、分力、力的平行四邊形法則、三種常見型別的力、力的三要素、時間、時刻、位移、路程、速度、速率、瞬時速度、平均速度、平均速率、加速度、共點力平衡(平衡條件)、線速度、角速度、週期、頻率、向心加速度、向心力、動量、衝量、動量變化、功、功率、能、動能、重力勢能、彈性勢能、機械能、簡諧運動的位移、回覆力、受迫振動、共振、機械波、振幅、波長、波速。

2、基本規律:

勻變速直線運動的基本規律(12個方程);

三力共點平衡的特點;

牛頓運動定律(牛頓第一、第二、第三定律);

萬有引力定律;

天體運動的基本規律(行星、人造地球衛星、萬有引力完全充當向心力、近地極地同步三顆特殊衛星、變軌問題);

動量定理與動能定理(力與物體速度變化的關係—衝量與動量變化的關係—功與能量變化的關係);

動量守恆定律(四類守恆條件、方程、應用過程);

功能基本關係(功是能量轉化的量度)

重力做功與重力勢能變化的關係(重力、分子力、電場力、引力做功的特點);

功能原理(非重力做功與物體機械能變化之間的關係);

機械能守恆定律(守恆條件、方程、應用步驟);

簡諧運動的基本規律(兩個理想化模型一次全振動四個過程五個量、簡諧運動的對稱性、單擺的振動週期公式);簡諧運動的影象應用;

簡諧波的傳播特點;波長、波速、週期的關係;簡諧波的影象應用;

3、基本運動型別:

運動型別受力特點備註

直線運動所受合外力與物體速度方向在一條直線上一般變速直線運動的受力分析

勻變速直線運動同上且所受合外力為恆力1.勻加速直線運動

2.勻減速直線運動

曲線運動所受合外力與物體速度方向不在一條直線上速度方向沿軌跡的切線方向

合外力指向軌跡內側

(類)平拋運動所受合外力為恆力且與物體初速度方向垂直運動的合成與分解

勻速圓周運動所受合外力大小恆定、方向始終沿半徑指向圓心

(合外力充當向心力)一般圓周運動的受力特點

向心力的受力分析

簡諧運動所受合外力大小與位移大小成正比,方向始終指向平衡位置回覆力的受力分析

4、基本:

力的合成與分解(平行四邊形、三角形、多邊形、正交分解);

三力平衡問題的處理方法(封閉三角形法、相似三角形法、多力平衡問題—正交分解法);

對物體的受力分析(隔離體法、依據:力的產生條件、物體的運動狀態、注意靜摩擦力的分析方法—假設法);

處理勻變速直線運動的解析法(解方程或方程組)、影象法(勻變速直線運動的s-t影象、v-t影象);

解決動力學問題的三大類方法:牛頓運動定律結合運動學方程(恆力作用下的巨集觀低速運動問題)、動量、能量(可處理變力作用的問題、不需考慮中間過程、注意運用守恆觀點);

針對簡諧運動的對稱法、針對簡諧波影象的描點法、平移法

5、常見題型:

合力與分力的關係:兩個分力及其合力的大小、方向六個量中已知其中四個量求另外兩個量。

斜面類問題:(1)斜面上靜止物體的受力分析;(2)斜面上運動物體的受力情況和運動情況的分析(包括物體除受常規力之外多一個某方向的力的分析);(3)整體(斜面和物體)受力情況及運動情況的分析(整體法、個體法)。

動力學的兩大類問題:(1)已知運動求受力;(2)已知受力求運動。

豎直面內的圓周運動問題:(注意向心力的分析;繩拉物體、杆拉物體、軌道內側外側問題;最高點、最低點的特點)。

人造地球衛星問題:(幾個近似;黃金變換;注意公式中各物理量的物理意義)。

動量機械能的綜合題:

(1)單個物體應用動量定理、動能定理或機械能守恆的題型;

(2)系統應用動量定理的題型;

(3)系統綜合運用動量、能量觀點的題型:

①碰撞問題;

②爆炸(反衝)問題(包括靜止原子核衰變問題);

③滑塊長木板問題(注意不同的`初始條件、滑離和不滑離兩種情況、四個方程);

④子彈射木塊問題 高中英語;

⑤彈簧類問題(豎直方向彈簧、水平彈簧振子、系統內物體間通過彈簧相互作用等);

⑥單擺類問題:

⑦工件皮帶問題(水平傳送帶,傾斜傳送帶);

⑧人車問題;人船問題;人氣球問題(某方向動量守恆、平均動量守恆);

機械波的影象應用題:

(1)機械波的傳播方向和質點振動方向的互推;

(2)依據給定狀態能夠畫出兩點間的基本波形圖;

(3)根據某時刻波形圖及相關物理量推斷下一時刻波形圖或根據兩時刻波形圖求解相關物理量;

(4)機械波的干涉、衍射問題及聲波的多普勒效應。

電磁學部分:

1、基本概念:

電場、電荷、點電荷、電荷量、電場力(靜電力、庫侖力)、電場強度、電場線、勻強電場、電勢、電勢差、電勢能、電功、等勢面、靜電遮蔽、電容器、電容、電流強度、電壓、電阻、電阻率、電熱、電功率、熱功率、純電阻電路、非純電阻電路、電動勢、內電壓、路端電壓、內電阻、磁場、磁感應強度、安培力、洛倫茲力、磁感線、電磁感應現象、磁通量、感應電動勢、自感現象、自感電動勢、正弦交流電的週期、頻率、瞬時值、最大值、有效值、感抗、容抗、電磁場、電磁波的週期、頻率、波長、波速

2、基本規律:

電量平分原理(電荷守恆)

庫倫定律(注意條件、比較-兩個近距離的帶電球體間的電場力)

電場強度的三個表示式及其適用條件(定義式、點電荷電場、勻強電場)

電場力做功的特點及與電勢能變化的關係

電容的定義式及平行板電容器的決定式

部分電路歐姆定律(適用條件)

電阻定律

串並聯電路的基本特點(總電阻;電流、電壓、電功率及其分配關係)

焦耳定律、電功(電功率)三個表示式的適用範圍

閉合電路歐姆定律

基本電路的動態分析(串反並同)

電場線(磁感線)的特點

等量同種(異種)電荷連線及中垂線上的場強和電勢的分佈特點

常見電場(磁場)的電場線(磁感線)形狀(點電荷電場、等量同種電荷電場、等量異種電荷電場、點電荷與帶電金屬板間的電場、勻強電場、條形磁鐵、蹄形磁鐵、通電直導線、環形電流、通電螺線管)

電源的三個功率(總功率、損耗功率、輸出功率;電源輸出功率的最大值、)

電動機的三個功率(輸入功率、損耗功率、輸出功率)

電阻的伏安特性曲線、電源的伏安特性曲線(影象及其應用;注意點、線、面、斜率、截距的物理意義)

安培定則、左手定則、楞次定律(三條表述)、右手定則

電磁感應的判定條件

感應電動勢大小的計算:法拉第電磁感應定律、導線垂直切割磁感線

通電自感現象和斷電自感現象

正弦交流電的產生原理

電阻、感抗、容抗對交變電流的作用

變壓器原理(變壓比、變流比、功率關係、多股線圈問題、原線圈串、並聯用電器問題)

3、常見儀器:

示波器、示波管、電流計、電流表(磁電式電流表的原理)、電壓表、定值電阻、電阻箱、滑動變阻器、電動機、電解槽、多用電錶、速度選擇器、質普儀、迴旋加速器、磁流體發電機、電磁流量計、日光燈、變壓器、自耦變壓器。

4、實驗部分:

(1)描繪電場中的等勢線:各種靜電場的模擬;各點電勢高低的判定;

(2)電阻的測量:①分類:定值電阻的測量;電源電動勢和內電阻的測量;電錶內阻的測量;②方法:伏安法(電流表的內接、外接;接法的判定;誤差分析);歐姆表測電阻(歐姆表的使用方法、操作步驟、讀數);半偏法(並聯半偏、串聯半偏、誤差分析);替代法;*電橋法(橋為電阻、靈敏電流計、電容器的情況分析);

(3)測定金屬的電阻率(電流表外接、滑動變阻器限流式接法、螺旋測微器、遊標卡尺的讀數);

(4)小燈泡伏安特性曲線的測定(電流表外接、滑動變阻器分壓式接法、注意曲線的變化);

(5)測定電源電動勢和內電阻(電流表內接、資料處理:解析法、影象法);

(6)電流表和電壓表的改裝(分流電阻、分壓電阻阻值的計算、刻度的修改);

(7)用多用電錶測電阻及黑箱問題;

(8)練習使用示波器;

(9)儀器及連線方式的選擇:①電流表、電壓表:主要看量程(電路中可能提供的最大電流和最大電壓);②滑動變阻器:沒特殊要求按限流式接法,如有下列情況則用分壓式接法:要求測量範圍大、多測幾組資料、滑動變阻器總阻值太小、測伏安特性曲線;

(10)感測器的應用(光敏電阻:阻值隨光照而減小、熱敏電阻:阻值隨溫度升高而減小)

5、常見題型:

電場中移動電荷時的功能關係;

一條直線上三個點電荷的平衡問題;

帶電粒子在勻強電場中的加速和偏轉(示波器問題);

全電路中一部分電路電阻發生變化時的電路分析(應用閉合電路歐姆定律、歐姆定律;或應用“串反並同”;若兩部分電路阻值發生變化,可考慮用極值法);

電路中連線有電容器的問題(注意電容器兩極板間的電壓、電路變化時電容器的充放電過程);

通電導線在各種磁場中在磁場力作用下的運動問題;(注意磁感線的分佈及磁場力的變化);

通電導線在勻強磁場中的平衡問題;

帶電粒子在勻強磁場中的運動(勻速圓周運動的半徑、週期;在有界勻強磁場中的一段圓弧運動:找圓心-畫軌跡-確定半徑-作輔助線-應用幾何求解;在有界磁場中的運動時間);

閉合電路中的金屬棒在水平導軌或斜面導軌上切割磁感線時的運動問題;

兩根金屬棒在導軌上垂直切割磁感線的情況(左右手定則及楞次定律的應用、動量觀點的應用);

帶電粒子在複合場中的運動(正交、平行兩種情況):

①.重力場、勻強電場的複合場;

②.重力場、勻強磁場的複合場;

③.勻強電場、勻強磁場的複合場;

④.三場合一。

高中物理知識點總結8

1、磁現象:

磁性:物體能夠吸引鋼鐵、鈷、鎳一類物質的性質叫磁性。

磁體:具有磁性的物體,叫做磁體。

磁體的分類:①形狀:條形磁體、蹄形磁體、針形磁體;

②來源:天然磁體(磁鐵礦石)、人造磁體;

③保持磁性的時間長短:硬磁體(永磁體)、軟磁體。

磁極:磁體上磁性最強的部分叫磁極。磁體兩端的磁性最強,中間的磁性最弱。

磁體的指向性:可以在水平面內自由轉動的條形磁體或磁針,靜止後總是一個磁極指南(叫南極,用S表示),另一個磁極指北(叫北極,用N表示)。

磁極間的相互作用:同名磁極互相排斥,異名磁極互相吸引。

無論磁體被摔碎成幾塊,每一塊都有兩個磁極。

磁化:一些物體在磁體或電流的作用下會獲得磁性,這種現象叫做磁化。

鋼和軟鐵都能被磁化:軟鐵被磁化後,磁性很容易消失,稱為軟磁性材料;鋼被磁化後,磁效能長期保持,稱為硬磁性材料。所以鋼是製造永磁體的好材料。

2、磁場:

磁場:磁體周圍的空間存在著一種看不見、摸不著的物質,我們把它叫做磁場。

磁場的基本性質:對放入其中的磁體產生磁力的作用。

磁場的方向:物理學中把小磁針靜止時北極所指的方向規定為該點磁場的方向。

磁感線:在磁場中畫一些有方向的曲線,方便形象的描述磁場,這樣的曲線叫做磁感線。對磁感線的認識:

①磁感線是假想的曲線,本身並不存在;

②磁感線切線方向就是磁場方向,就是小磁針靜止時N極指向;

③在磁體外部,磁感線都是從磁體的N極出發,回到S極。在磁體內部正好相反。 ④磁感線的疏密可以反應磁場的強弱,磁性越強的地方,磁感線越密;

3、地磁場:

地磁場:地球本身是一個巨大的磁體,在地球周圍的空間存在著磁場,叫做地磁場。

指南針:小磁針指南的叫南極(S),指北的叫北極(N),小磁針能夠指南北是因為受到了地磁場的作用。地磁場的北極在地理南極附近;地磁場的南極在地理北極附近。

地磁偏角:地理的兩極和地磁的兩極並不重合,磁針所指的南北方向與地理的南北極方向稍有偏離(地磁偏角),世界上最早記述這一現象的人是我國宋代的學者沈括。

高中物理知識點總結9

1、電場基本規律

1、庫侖定律

(1)定律內容:真空中兩個靜止點電荷之間的相互作用力,與它們的電荷量的乘積成正比,與它們的距離的平方成反比,作用力的方向在它們的連線上。

(2)表示式:k=9.0×109N·m2/C2——靜電力常量

(3)適用條件:真空中靜止的點電荷。

2、電荷守恆定律

電荷既不會創生,也不會消滅,它只能從一個物體轉移到另一個物體,或者從物體的一部分轉移到另一部分,在轉移過程中,電荷的總量保持不變。

(1)三種帶電方式:摩擦起電,感應起電,接觸起電。

(2)元電荷:最小的帶電單元,任何帶電體的帶電量都是元電荷的整數倍,e=

1.6×10-19C——密立根測得e的值。

2、電場能的性質

1、電場能的基本性質:電荷在電場中移動,電場力要對電荷做功。

2、電勢φ

(1)定義:電荷在電場中某一點的電勢能Ep與電荷量的比值。

(2)定義式:φ——單位:伏(V)——帶正負號計算

(3)特點:

1、電勢具有相對性,相對參考點而言。但電勢之差與參考點的選擇無關。

2、電勢一個純量,但是它有正負,正負只表示該點電勢比參考點電勢高,還是低。

3、電勢的大小由電場本身決定,與Ep和q無關。

4、電勢在數值上等於單位正電荷由該點移動到零勢點時電場力所做的功。

(4)電勢高低的判斷方法

1、根據電場線判斷:沿著電場線電勢降低。φA>φB

2、根據電勢能判斷:

正電荷:電勢能大,電勢高;電勢能小,電勢低。

負電荷:電勢能大,電勢低;電勢能小,電勢高。

結論:只在電場力作用下,靜止的電荷從電勢能高的地方向電勢能低的地方運動。

3、電勢能Ep

(1)定義:電荷在電場中,由於電場和電荷間的相互作用,由位置決定的能量。電荷在某點的電勢能等於電場力把電荷從該點移動到零勢能位置時所做的功。

(2)定義式:——帶正負號計算

(3)特點:

1、電勢能具有相對性,相對零勢能面而言,通常選大地或無窮遠處為零勢能面。

2、電勢能的變化量Ep與零勢能面的選擇無關。

4、電勢差UAB

(1)定義:電場中兩點間的電勢之差。也叫電壓。

(2)定義式:UAB=φA-φB

(3)特點:

1、電勢差是純量,但是卻有正負,正負只表示起點和終點的電勢誰高誰低。若UAB>0,則UBA<0。

2、單位:伏

3、電場中兩點的電勢差是確定的,與零勢面的選擇無關

4、U=Ed勻強電場中兩點間的電勢差計算公式。——電勢差與電場強度之間的關係。

5、靜電平衡狀態

(1)定義:導體內不再有電荷定向移動的穩定狀態

(2)特點:

1、處於靜電平衡狀態的導體,內部場強處處為零。

2、感應電荷在導體內任何位置產生的電場都等於外電場在該處場強的大小相等,方向相反。

3、處於靜電平衡狀態的整個導體是個等勢體,導體表面是個等勢面。

4、電荷只分布在導體的外表面,在導體表面的分佈與導體表面的彎曲程度有關,越彎曲,電荷分佈越多。

6、電場力做功WAB

(1)電場力做功的特點:電場力做功與路徑無關,只與初末位置有關,即與初末位置的電勢差有關。

(2)表示式:WAB=UABq—帶正負號計算(適用於任何電場)WAB=Eqd—d沿電場方向的距離。——勻強電場

(3)電場力做功與電勢能的關係WAB=-Ep=EpA-EPB

結論:電場力做正功,電勢能減少電場力做負功,電勢能增加

7、等勢面

(1)定義:電勢相等的點構成的面。

(2)特點:

等勢面上各點電勢相等,在等勢面上移動電荷,電場力不做功。

等勢面與電場線垂直

兩等勢面不相交

等勢面的密集程度表示場強的大小:疏弱密強。

畫等勢面時,相鄰等勢面間的電勢差相等。

(3)判斷電場線上兩點間的電勢差的大小:靠近場源(場強大)的兩間的電勢差大於遠離場源(場強小)相等距離兩點間的電勢差。

8、高中物理靜電場公式總結

1.兩種電荷、電荷守恆定律、元電荷:e=1.6×10-19C

2.庫侖定律:F=kQ1Q2/r2 (在真空中)

3.電場強度:E=F/q(定義式、計算式)

4.真空點(源)電荷形成的電場E=kQ/r2

5.勻強電場的場強E=UAB/d

6.電場力:F=qE

7.電勢與電勢差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

8.電場力做功:WAB=qUAB=Eqd

9.電勢能:EA=qφA

10.電勢能的變化ΔEAB=EB-EA

11.電場力做功與電勢能變化ΔEAB=-WAB=-qUAB (電勢能的增量等於電場力做功的負值)

12.電容C=Q/U(定義式,計算式)

13.平行板電容器的電容C=εr*S/4πkd=εS/d

14.帶電粒子在電場中的加速(Vo=0):W=ΔEK或qU=mVt2 /2,Vt=(2qU/m)1/2

15.帶電粒子沿垂直電場方向以速度Vo進入勻強電場時的偏轉(不考慮重力作用的情況下) 類平 垂直電場方向:勻速直線運動L=Vot(在帶等量異種電荷的平行極板中:E=U/d) 拋運動 平行電場方向:初速度為零的勻加速直線運動d=at2 /2,a=F/m=qE/m

高中物理知識點總結10

一、能量的轉化與守恆

1.化學能:由於化學反應,物質的分子結構變化而產生的能量。

2.核能:由於核反應,物質的原子結構發生變化而產生的能量。

3.能量守恆定律:能量既不會消滅,也不會創生,它只會從一種形式轉化為另一種形式,或者從一個物體轉移到另一個物體,而能的總量保持不變。

內容:能量既不會消滅,也不會創生,它只會從一種形式轉化為其他形式,或者從一個物體轉移到另一個物體,而在轉化和轉移的過程中,能量的總量保持不變。

E機械能1+E其它1=E機械能2+E其它2

能量耗散:無法將釋放能量收集起來重新利用的現象叫能量耗散,它反映了自然界中能量轉化具有方向性。

二、能源與社會

1.可再生能源:可以長期提供或可以再生的能源。

2.不可再生能源:一旦消耗就很難再生的能源。

3.能源與環境:合理利用能源,減少環境汙染,要節約能源、開發新能源。

三、開發新能源

1.太陽能

2.核能

3.核能發電

4、其它新能源:地熱能、潮汐能、風能。

四、能源的分類和能量的轉化

能源品種繁多,按其來源可以分為三大類:一是來自地球以外的太陽能,除太陽的輻射能之外,煤炭、石油、天然氣、水能、風能等都間接來自太陽能;第二類來自地球本身,如地熱能,原子核能(核燃料鈾、釷等存在於地球自然界);第三類則是由月球、太陽等天體對地球的引力而產生的能量,如潮汐能。

【一次能源】指在自然界現成存在,可以直接取得且不必改變其基本形態的能源,如煤炭、天然氣、地熱、水能等。由一次能源經過加工或轉換成另一種形態的能源產品,如電力、焦炭、汽油、柴油、煤氣等屬於二次能源。

【常規能源】也叫傳統能源,就是指已經大規模生產和廣泛利用的能源。表2-1所統計的幾種能源中如煤炭、石油、天然氣、核能等都屬一次性非再生的常規能源。而水電則屬於再生能源,如葛洲壩水電站和未來的三峽水電站,只要長江水不幹涸,發電也就不會停止。煤和石油天然氣則不然,它們在地殼中是經千百萬年形成的(按現在的採用速率,石油可用幾十年,煤炭可用幾百年),這些能源短期內不可能再生,因而人們對此有危機感是很自然的。

【新能源】指以新技術為基礎,系統開發利用的能源。其中最引人注目的是太陽能的利用。據估計太陽輻射到地球表面的能量是目前全世界能量消費的1.3萬倍。如何把這些能量收集起來為我們所用,是科學家們十分關心的問題。植物的光合作用是自然界“利用”太陽能極為成功的範例。它不僅為大地帶來了鬱鬱蔥蔥的森林和養育萬物的糧菜瓜果,地球蘊藏的煤、石油、天然氣的起源也與此有關。尋找有效的光合作用的模擬體系、利用太陽能使水分解為氫氣和氧氣及直接將太陽能轉變為電能等都是當今科學技術的重要課題,一直受到各國政府和工業界的支援與鼓勵。

以上是從能源的使用進行分類的方法,若從物質運動的形式看,不同的運動形式,各有對應的能量,如機械能(包括動能和勢能)、熱能、電能、光能等等。各種形式的能量可以互相轉化,如動能可與勢能互相轉化(建築工地打夯的落錘的上、下運動所包括的能量轉化過程);化學能可與電能互相轉化(化學電池和電解就是實現這種轉化的兩種過程)。在能量相互轉化過程中,儘管做功的效率因所用工具或技術不同而有差別,但是折算成同種能量時,其總值卻是不變的,這就是能量轉化和能量守恆定律,這是自然界中一條極為基本的定律(另一條為質量守恆定律),也是識破各式各樣永動機的有力判據。在能量轉化過程過中,未能做有用功的部分稱為“無用功”,通常以熱的形式表現。

物質體系中,分子的動能、勢能、電子能量和核能等的總和稱為內能。內能的絕對值至今尚無法直接測定,但體系狀態發生變化時,內能的變化以功或熱的形式表現,它們是可以被精確測量的。體系的內能、熱效應和功之間的關係式為:

E=Q+W

其中E是體系內能的變化,Q是體系從外界吸收的熱量,W是外界對體系所做的功。這就是著名的熱力學第一定律的數學表示式,也就是能量守恆定律的數學表示式。應用上述公式時,要注意各種物理量的正、負號,即:

E──(+)體系內能增加, (-)體系內能體系減少;

Q──(+)體系吸收熱量, (-)體系放出能量;

W──(+)外界對體系做功, (-)體系對外界做功。

例如1.00 g乙醇在78.3℃時氣化,需吸收 854 J的熱,這些乙醇由液態變成氣態,在101 kPa壓力下所做的體積膨脹功為63.2J,這是體系對外界所做的功,應為負值,所以該體系內能的變化E=[854+(- 63.2)]J=+791J,E為正值,即體系內能增加了791J。

能源的利用,其實就是能量的轉化過程。如煤燃燒放熱使蒸汽溫度升高的過程就是化學能轉化為蒸汽內能的過程;高溫蒸汽推動發電機發電的過程是內能轉化為電能的過程;電能通過電動機可轉化為機械能;電能通過白熾燈泡或熒光燈管可轉化為光能;電能通過電解槽可轉化為化學能等等。柴草、煤炭、石油和天然氣等常用能源所提供的能量都是隨化學變化而產生的,多種新能源的利用也與化學變化有關。化學變化的實質是化學鍵的改組,所以瞭解化學鍵及鍵能等基本概念,將有助於加深對能源問題的認識。

高中物理知識點總結11

一、重力及其相互作用

1、力是物體之間的相互作用,有力必有施力物體和受力物體。力的大小、方向、作用點叫力的三要素。用一條有向線段把力的三要素表示出來的方法叫力的圖示。

按照力命名的依據不同,可以把力分為:

①按性質命名的力(例如:重力、彈力、摩擦力、分子力、電磁力等。)

②按效果命名的力(例如:拉力、壓力、支援力、動力、阻力等)。

力的作用效果:

①形變;②改變運動狀態。

2、重力:

由於地球的吸引而使物體受到的力。重力的大小G=mg,方向豎直向下。作用點叫物體的重心;重心的位置與物體的質量分佈和形狀有關。質量均勻分佈,形狀規則的物體的重心在其幾何中心處。薄板類物體的重心可用懸掛法確定,

注意:重力是萬有引力的一個分力,另一個分力提供物體隨地球自轉所需的向心力,在兩極處重力等於萬有引力。由於重力遠大於向心力,一般情況下近似認為重力等於萬有引力。

3、四種基本相互作用

萬用引力相互作用、電磁相互作用、強相互作用、弱相互作用

二、彈力:

(1)內容:發生形變的物體,由於要恢復原狀,會對跟它接觸的且使其發生形變的物體產生力的作用,這種力叫彈力。

(2)條件:①接觸;②形變。但物體的形變不能超過彈性限度。

(3)彈力的方向和產生彈力的那個形變方向相反。(平面接觸面間產生的彈力,其方向垂直於接觸面;曲面接觸面間產生的彈力,其方向垂直於過研究點的曲面的切面;點面接觸處產生的彈力,其方向垂直於面、繩子產生的彈力的方向沿繩子所在的直線。)

(4)大小:

①彈簧的彈力大小由F=kx計算,

②一般情況彈力的大小與物體同時所受的其他力及物體的運動狀態有關,應結合平衡條件或牛頓定律確定。

三、滑動摩擦力

1、兩個相互接觸的物體有相對滑動時,物體之間存在的摩擦叫做滑動摩擦。

2、在滑動摩擦中,物體間產生的阻礙物體相對滑動的作用力,叫做滑動摩擦力。

3、滑動摩擦力f的大小跟正壓力N(≠G)成正比。即:f=μN

4、μ稱為動摩擦因數,與相接觸的物體材料和接觸面的粗糙程度有關。0<μ<1。

5、滑動摩擦力的方向總是與物體相對滑動的方向相反,與其接觸面相切。

6、條件:直接接觸、相互擠壓(彈力),相對運動/趨勢。

7、摩擦力的大小與接觸面積無關,與相對運動速度無關。

8、摩擦力可以是阻力,也可以是動力。

9、計算:公式法/二力平衡法。

四、研究靜摩擦力

1、當物體具有相對滑動趨勢時,物體間產生的摩擦叫做靜摩擦,這時產生的摩擦力叫靜摩擦力。

2、物體所受到的靜摩擦力有一個最大限度,這個最大值叫最大靜摩擦力。

3、靜摩擦力的方向總與接觸面相切,與物體相對運動趨勢的方向相反。

4、靜摩擦力的大小由物體的運動狀態以及外部受力情況決定,與正壓力無關,平衡時總與切面外力平衡。0≤F=f0≤fm

5、最大靜摩擦力的大小與正壓力接觸面的粗糙程度有關。fm=μ0·N(μ≤μ0)

6、靜摩擦有無的判斷:概念法(相對運動趨勢);二力平衡法;牛頓運動定律法;假設法(假設沒有靜摩擦)。

高中物理知識點總結12

一、開普勒行星運動定律

(1)、所有的行星圍繞太陽運動的軌道都是橢圓,太陽處在所有橢圓的一個焦點上,

(2)、對於每一顆行星,太陽和行星的聯線在相等的時間內掃過相等的面積,

(3)、所有行星的軌道的半長軸的三次方跟公轉週期的二次方的比值都相等。

二、萬有引力定律

1、內容:宇宙間的一切物體都是互相吸引的,兩個物體間的引力大小,跟它們的質量的乘積成正比,跟它們的距離的平方成反比、

2、公式:F=Gr2m1m2,其中G=6.67×10-11 N·m2/kg2,稱為引力常量、

3、適用條件:嚴格地說公式只適用於質點間的相互作用,當兩個物體間的距離遠遠大於物體本身的大小時,公式也可近似使用,但此時r應為兩物體重心間的距離、對於均勻的球體,r是兩球心間的距離、

三、萬有引力定律的應用

1、解決天體(衛星)運動問題的基本思路

(1)把天體(或人造衛星)的運動看成是勻速圓周運動,其所需向心力由萬有引力提供,關係式:Gr2Mm=mrv2=mω2r=mT2π2r.

(2)在地球表面或地面附近的物體所受的重力等於地球對物體的萬有引力,即mg=GR2Mm,gR2=GM.

2、天體質量和密度的估算通過觀察衛星繞天體做勻速圓周運動的週期T,軌道半徑r,由萬有引力等於向心力,即Gr2Mm=mT24π2r,得出天體質量M=GT24π2r3.

(1)若已知天體的半徑R,則天體的密度ρ=VM=πR34=GT2R33πr3

(2)若天體的衛星環繞天體表面運動,其軌道半徑r等於天體半徑R,則天體密度ρ=GT23π可見,只要測出衛星環繞天體表面運動的週期,就可求得天體的密度、

3、人造衛星

(1)研究人造衛星的基本方法:看成勻速圓周運動,其所需的向心力由萬有引力提供、Gr2Mm=mrv2=mrω2=mrT24π2=ma向、

(2)衛星的線速度、角速度、週期與半徑的關係

①由Gr2Mm=mrv2得v=rGM,故r越大,v越小、

②由Gr2Mm=mrω2得ω=r3GM,故r越大,ω越小、

③由Gr2Mm=mrT24π2得T=GM4π2r3,故r越大,T越大

(3)人造衛星的超重與失重

①人造衛星在發射升空時,有一段加速運動;在返回地面時,有一段減速運動,這兩個過程加速度方向均向上,因而都是超重狀態、

②人造衛星在沿圓軌道運動時,由於萬有引力提供向心力,所以處於完全失重狀態、在這種情況下凡是與重力有關的力學現象都會停止發生、

(4)三種宇宙速度

①第一宇宙速度(環繞速度)v1=7.9 km/s.這是衛星繞地球做圓周運動的最大速度,也是衛星的最小發射速度、若7.9 km/s≤v<11.2 km/s,物體繞地球執行、

②第二宇宙速度(脫離速度)v2=11.2 km/s.這是物體掙脫地球引力束縛的最小發射速度、若11.2 km/s≤v<16.7 km/s,物體繞太陽執行、

③第三宇宙速度(逃逸速度)v3=16.7 km/s這是物體掙脫太陽引力束縛的最小發射速度、若v≥16.7 km/s,物體將脫離太陽系在宇宙空間執行、

題型:

1、求星球表面的重力加速度在星球表面處萬有引力等於或近似等於重力,則:GR2Mm=mg,所以g=R2GM(R為星球半徑,M為星球質量)、由此推得兩個不同天體表面重力加速度的關係為:g2g1=R12R22·M2M1.

2、求某高度處的重力加速度若設離星球表面高h處的重力加速度為gh,則:G(R+h)2Mm=mgh,所以gh=(R+h)2GM,可見隨高度的增加重力加速度逐漸減小、ggh=(R+h)2R2.

3、近地衛星與同步衛星

(1)近地衛星其軌道半徑r近似地等於地球半徑R,其運動速度v=RGM==7.9 km/s,是所有衛星的最大繞行速度;執行週期T=85 min,是所有衛星的最小週期;向心加速度a=g=9.8 m/s2是所有衛星的最大加速度、

(2)地球同步衛星的五個“一定”

①週期一定T=24h.

②距離地球表面的高度(h)一定

③線速度(v)一定

④角速度(ω)一定

⑤向心加速度(a)一定

高中物理知識點總結13

一、力 物體的平衡

1.力是物體對物體的作用,是物體發生形變和改變物體的運動狀態(即產生加速度)的原因. 力是向量。

2.重力

(1)重力是由於地球對物體的吸引而產生的.

[注意]重力是由於地球的吸引而產生,但不能說重力就是地球的吸引力,重力是萬有引力的一個分力. 但在地球表面附近,可以認為重力近似等於萬有引力

(2)重力的大小:地球表面G=mg,離地面高h處。

(3)重力的方向:豎直向下(不一定指向地心)。

(4)重心:物體的各部分所受重力合力的作用點,物體的重心不一定在物體上.

3.彈力

(1)產生原因:由於發生彈性形變的物體有恢復形變的趨勢而產生的.

(2)產生條件:

①直接接觸;

②有彈性形變.

(3)彈力的方向:與物體形變的方向相反,彈力的受力物體是引起形變的物體,施力物體是發生形變的物體.在點面接觸的情況下,垂直於面;

在兩個曲面接觸(相當於點接觸)的情況下,垂直於過接觸點的公切面.

①繩的拉力方向總是沿著繩且指向繩收縮的方向,且一根輕繩上的張力大小處處相等.

②輕杆既可產生壓力,又可產生拉力,且方向不一定沿杆.

(4)彈力的大小:一般情況下應根據物體的運動狀態,利用平衡條件或牛頓定律來求解.彈簧彈力可由胡克定律來求解.

胡克定律:在彈性限度內,彈簧彈力的大小和彈簧的形變數成正比,即F=kx.k為彈簧的勁度係數,它只與彈簧本身因素有關,單位是N/m.

4.摩擦力

(1)產生的條件:

①相互接觸的物體間存在壓力;

②接觸面不光滑;

③接觸的物體之間有相對運動(滑動摩擦力)或相對運動的趨勢(靜摩擦力),這三點缺一不可.

(2)摩擦力的方向:沿接觸面切線方向,與物體相對運動或相對運動趨勢的方向相反,與物體運動的方向可以相同也可以相反.

(3)判斷靜摩擦力方向的方法:

①假設法:首先假設兩物體接觸面光滑,這時若兩物體不發生相對運動,則說明它們原來沒有相對運動趨勢,也沒有靜摩擦力;若兩物體發生相對運動,則說明它們原來有相對運動趨勢,並且原來相對運動趨勢的方向跟假設接觸面光滑時相對運動的方向相同.然後根據靜摩擦力的方向跟物體相對運動趨勢的方向相反確定靜摩擦力方向.

②平衡法:根據二力平衡條件可以判斷靜摩擦力的方向.

(4)大小:先判明是何種摩擦力,然後再根據各自的規律去分析求解.

①滑動摩擦力大小:利用公式f=μF N 進行計算,其中FN 是物體的正壓力,不一定等於物體的重力,甚至可能和重力無關.或者根據物體的運動狀態,利用平衡條件或牛頓定律來求解.

②靜摩擦力大小:靜摩擦力大小可在0與max 之間變化,一般應根據物體的運動狀態由平衡條件或牛頓定律來求解.

5.物體的受力分析

(1)確定所研究的物體,分析周圍物體對它產生的作用,不要分析該物體施於其他物體上的力,也不要把作用在其他物體上的力錯誤地認為通過“力的傳遞”作用在研究物件上.

(2)按“性質力”的順序分析.即按重力、彈力、摩擦力、其他力順序分析,不要把“效果力”與“性質力”混淆重複分析.

(3)如果有一個力的方向難以確定,可用假設法分析.先假設此力不存在,想像所研究的物體會發生怎樣的運動,然後審查這個力應在什麼方向,物件才能滿足給定的運動狀態.

6.力的合成與分解

(1)合力與分力:如果一個力作用在物體上,它產生的效果跟幾個力共同作用產生的效果相同,這個力就叫做那幾個力的合力,而那幾個力就叫做這個力的分力.

(2)力合成與分解的根本方法:平行四邊形定則.

(3)力的合成:求幾個已知力的合力,叫做力的合成.共點的兩個力(F 1 和F 2 )合力大小F的取值範圍為:|F 1 -F 2 |≤F≤F 1 +F 2 .

(4)力的分解:求一個已知力的分力,叫做力的分解(力的分解與力的合成互為逆運算).

在實際問題中,通常將已知力按力產生的實際作用效果分解;為方便某些問題的研究,在很多問題中都採用正交分解法.

7.共點力的平衡

(1)共點力:作用在物體的同一點,或作用線相交於一點的幾個力.

(2)平衡狀態:物體保持勻速直線運動或靜止叫平衡狀態,是加速度等於零的狀態.

(3)共點力作用下的物體的平衡條件:物體所受的合外力為零,即∑F=0,若採用正交分解法求解平衡問題,則平衡條件應為:∑Fx =0,∑Fy =0.

(4)解決平衡問題的常用方法:隔離法、整體法、圖解法、三角形相似法、正交分解法等等.

二、直線運動

1.機械運動:一個物體相對於另一個物體的位置的改變叫做機械運動,簡稱運動,它包括平動,轉動和振動等運動形式.為了研究物體的運動需要選定參照物(即假定為不動的物體),對同一個物體的運動,所選擇的參照物不同,對它的運動的描述就會不同,通常以地球為參照物來研究物體的運動.

2.質點:用來代替物體的只有質量沒有形狀和大小的點,它是一個理想化的物理模型.僅憑物體的大小不能做視為質點的依據。

3.位移和路程:位移描述物體位置的變化,是從物體運動的初位置指向末位置的有向線段,是向量.路程是物體運動軌跡的長度,是純量.

路程和位移是完全不同的概念,僅就大小而言,一般情況下位移的大小小於路程,只有在單方向的直線運動中,位移的大小才等於路程.

4.速度和速率

(1)速度:描述物體運動快慢的物理量.是向量.

①平均速度:質點在某段時間內的位移與發生這段位移所用時間的比值叫做這段時間(或位移)的平均速度v,即v=s/t,平均速度是對變速運動的粗略描述.

②瞬時速度:運動物體在某一時刻(或某一位置)的速度,方向沿軌跡上質點所在點的切線方向指向前進的一側.瞬時速度是對變速運動的精確描述.

(2)速率:

①速率只有大小,沒有方向,是純量.

②平均速率:質點在某段時間內通過的路程和所用時間的比值叫做這段時間內的平均速率.在一般變速運動中平均速度的大小不一定等於平均速率,只有在單方向的直線運動,二者才相等.

5.加速度

(1)加速度是描述速度變化快慢的物理量,它是向量.加速度又叫速度變化率.

(2)定義:在勻變速直線運動中,速度的變化Δv跟發生這個變化所用時間Δt的比值,叫做勻變速直線運動的加速度,用a表示.

(3)方向:與速度變化Δv的方向一致.但不一定與v的方向一致.

[注意]加速度與速度無關.只要速度在變化,無論速度大小,都有加速度;只要速度不變化(勻速),無論速度多大,加速度總是零;只要速度變化快,無論速度是大、是小或是零,物體加速度就大.

6.勻速直線運動

(1)定義:在任意相等的時間內位移相等的直線運動叫做勻速直線運動.

(2)特點:a=0,v=恆量.

(3)位移公式:S=vt.

7.勻變速直線運動

(1)定義:在任意相等的時間內速度的變化相等的直線運動叫勻變速直線運動.

(2)特點:a=恆量

以上各式均為向量式,應用時應規定正方向,然後把向量化為代數量求解,通常選初速度方向為正方向,凡是跟正方向一致的取“+”值,跟正方向相反的取“-”值.

8.重要結論

(1)勻變速直線運動的質點,在任意兩個連續相等的時間T內的位移差值是恆量。

(2)勻變速直線運動的質點,在某段時間內的中間時刻的瞬時速度,等於這段時間內的平均速度。

9.自由落體運動

(1)條件:初速度為零,只受重力作用.

(2)性質:是一種初速為零的勻加速直線運動,a=g.

10.運動影象

(1)位移影象:

①影象上一點切線的斜率表示該時刻所對應速度;

②影象是直線表示物體做勻速直線運動,影象是曲線則表示物體做變速運動;

③影象與橫軸交叉,表示物體從參考點的一邊運動到另一邊.

(2)速度影象:

①在速度影象中,可以讀出物體在任何時刻的速度;

②在速度影象中,物體在一段時間內的位移大小等於物體的速度影象與這段時間軸所圍面積的值.

③在速度影象中,物體在任意時刻的加速度就是速度影象上所對應的點的切線的斜率.

④圖線與橫軸交叉,表示物體運動的速度反向.

⑤圖線是直線表示物體做勻變速直線運動或勻速直線運動;圖線是曲線表示物體做變加速運動.

熱門標籤