數學必修五知識點總結

來源:才華庫 2.71W

總結是事後對某一階段的學習、工作或其完成情況加以回顧和分析的一種書面材料,他能夠提升我們的書面表達能力,因此我們需要回頭歸納,寫一份總結了。我們該怎麼去寫總結呢?以下是小編收集整理的數學必修五知識點總結,歡迎大家借鑑與參考,希望對大家有所幫助。

數學必修五知識點總結

數學必修五知識點總結1

排列組合

排列P------和順序有關

組合C-------不牽涉到順序的問題

排列分順序,組合不分

例如把5本不同的書分給3個人,有幾種分法."排列"

把5本書分給3個人,有幾種分法"組合"

1.排列及計算公式

從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,用符號p(n,m)表示.

p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規定0!=1).

2.組合及計算公式

從n個不同元素中,任取m(m≤n)個元素併成一組,叫做從n個不同元素中取出m個元素的一個組合;從n個不同元素中取出m(m≤n)個元素的所有組合的個數,叫做從n個不同元素中取出m個元素的組合數.用符號

c(n,m)表示.

c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);

3.其他排列與組合公式

從n個元素中取出r個元素的迴圈排列數=p(n,r)/r=n!/r(n-r)!.

n個元素被分成k類,每類的個數分別是n1,n2,這n個元素的全排列數為

n!/(n1!_2!_.._k!).

k類元素,每類的個數無限,從中取出m個元素的組合數為c(m+k-1,m).

排列(Pnm(n為下標,m為上標))

Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號);Pnn(兩個n分別為上標和下標)=n!;0!=1;Pn1(n為下標1為上標)=n

組合(Cnm(n為下標,m為上標))

Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個n分別為上標和下標)=1;Cn1(n為下標1為上標)=n;Cnm=Cnn-m

20xx-07-0813:30

公式P是指排列,從N個元素取R個進行排列。公式C是指組合,從N個元素取R個,不進行排列。N-元素的總個數R參與選擇的元素個數!-階乘,如9!=9________

從N倒數r個,表示式應該為n_n-1)_n-2)..(n-r+1);

因為從n到(n-r+1)個數為n-(n-r+1)=r

數學必修五知識點總結2

●不等式

1、不等式你會解麼?你會解麼?如果是寫解集不要忘記寫成集合形式!

2、的解集是(1,3),那麼的解集是什麼?

3、兩類恆成立問題圖象法——恆成立,則=?

★★★★分離變數法——在[1,3]恆成立,則=?(必考題)

4、線性規劃問題

(1)可行域怎麼作(一定要用直尺和鉛筆)定界——定域——邊界

(2)目標函式改寫:(注意分析截距與z的關係)

(3)平行直線系去畫

5、基本不等式的形式和變形形式

如a,b為正數,a,b滿足,則ab的範圍是

6、運用基本不等式求最值要注意:一正二定三相等!

如的最小值是的最小值(不要忘記交代是什麼時候取到=!!)

一個非常重要的函式——對勾函式的圖象是什麼?

運用對勾函式來處理下面問題的最小值是

7、★★兩種題型:

和——倒數和(1的代換),如x,y為正數,且,求的最小值?

和——積(直接用基本不等式),如x,y為正數,,則的範圍是?

不要忘記x,xy,x2+y2這三者的關係!如x,y為正數,,則的範圍是?

數學必修五知識點總結3

【不等關係及不等式】

一、不等關係及不等式知識點

1.不等式的定義

在客觀世界中,量與量之間的不等關係是普遍存在的,我們用數學符號、、連線兩個數或代數式以表示它們之間的不等關係,含有這些不等號的式子,叫做不等式.

2.比較兩個實數的大小

兩個實數的大小是用實數的運算性質來定義的,有a-baa-b=0a-ba0,則有a/baa/b=1a/ba

3.不等式的性質

(1)對稱性:ab

(2)傳遞性:ab,ba

(3)可加性:aa+cb+c,ab,ca+c

(4)可乘性:ab,cacb0,c0bd;

(5)可乘方:a0bn(nN,n

(6)可開方:a0

(nN,n2).

注意:

一個技巧

作差法變形的技巧:作差法中變形是關鍵,常進行因式分解或配方.

一種方法

待定係數法:求代數式的範圍時,先用已知的代數式表示目標式,再利用多項式相等的法則求出引數,最後利用不等式的性質求出目標式的範圍.

數學必修五知識點總結4

(一)、對映、函式、反函式

1、對應、對映、函式三個概念既有共性又有區別,對映是一種特殊的對應,而函式又是一種特殊的對映。

2、對於函式的概念,應注意如下幾點:

(1)掌握構成函式的三要素,會判斷兩個函式是否為同一函式。

(2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變數間的函式關係式,特別是會求分段函式的解析式。

(3)如果y=f(u),u=g(x),那麼y=f[g(x)]叫做f和g的複合函式,其中g(x)為內函式,f(u)為外函式。

3、求函式y=f(x)的反函式的一般步驟:

(1)確定原函式的值域,也就是反函式的定義域;

(2)由y=f(x)的解析式求出x=f—1(y);

(3)將x,y對換,得反函式的習慣表示式y=f—1(x),並註明定義域。

注意①:對於分段函式的反函式,先分別求出在各段上的反函式,然後再合併到一起。

②熟悉的應用,求f—1(x0)的值,合理利用這個結論,可以避免求反函式的過程,從而簡化運算。

(二)、函式的解析式與定義域

1、函式及其定義域是不可分割的整體,沒有定義域的函式是不存在的,因此,要正確地寫出函式的解析式,必須是在求出變數間的對應法則的同時,求出函式的定義域。求函式的定義域一般有三種類型:

(1)有時一個函式來自於一個實際問題,這時自變數x有實際意義,求定義域要結合實際意義考慮;

(2)已知一個函式的解析式求其定義域,只要使解析式有意義即可。如:

①分式的分母不得為零;

②偶次方根的被開方數不小於零;

③對數函式的真數必須大於零;

④指數函式和對數函式的底數必須大於零且不等於1;

⑤三角函式中的正切函式y=tanx(x∈R,且k∈Z),餘切函式y=cotx(x∈R,x≠kπ,k∈Z)等。

應注意,一個函式的解析式由幾部分組成時,定義域為各部分有意義的自變數取值的公共部分(即交集)。

(3)已知一個函式的定義域,求另一個函式的定義域,主要考慮定義域的深刻含義即可。

已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值範圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域。

2、求函式的解析式一般有四種情況。

(1)根據某實際問題需建立一種函式關係時,必須引入合適的變數,根據數學的有關知識尋求函式的解析式。

(2)有時題設給出函式特徵,求函式的解析式,可採用待定係數法。比如函式是一次函式,可設f(x)=ax+b(a≠0),其中a,b為待定係數,根據題設條件,列出方程組,求出a,b即可。

(3)若題設給出複合函式f[g(x)]的表示式時,可用換元法求函式f(x)的表示式,這時必須求出g(x)的值域,這相當於求函式的定義域。

(4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現其他未知量(如f(—x),等),必須根據已知等式,再構造其他等式組成方程組,利用解方程組法求出f(x)的表示式。

(三)、函式的值域與最值

1、函式的值域取決於定義域和對應法則,不論採用何種方法求函式值域都應先考慮其定義域,求函式值域常用方法如下:

(1)直接法:亦稱觀察法,對於結構較為簡單的函式,可由函式的解析式應用不等式的性質,直接觀察得出函式的值域。

(2)換元法:運用代數式或三角換元將所給的複雜函式轉化成另一種簡單函式再求值域,若函式解析式中含有根式,當根式裡一次式時用代數換元,當根式裡是二次式時,用三角換元。

(3)反函式法:利用函式f(x)與其反函式f—1(x)的定義域和值域間的關係,通過求反函式的定義域而得到原函式的值域,形如(a≠0)的函式值域可採用此法求得。

(4)配方法:對於二次函式或二次函式有關的函式的值域問題可考慮用配方法。

(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函式的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧。

(6)判別式法:把y=f(x)變形為關於x的一元二次方程,利用“△≥0”求值域。其題型特徵是解析式中含有根式或分式。

(7)利用函式的單調性求值域:當能確定函式在其定義域上(或某個定義域的子集上)的單調性,可採用單調性法求出函式的值域。

(8)數形結合法求函式的值域:利用函式所表示的幾何意義,藉助於幾何方法或圖象,求出函式的值域,即以數形結合求函式的值域。

2、求函式的最值與值域的區別和聯絡

求函式最值的常用方法和求函式值域的方法基本上是相同的,事實上,如果在函式的值域中存在一個最小(大)數,這個數就是函式的最小(大)值。因此求函式的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異。

如函式的值域是(0,16],值是16,無最小值。再如函式的值域是(—∞,—2]∪[2,+∞),但此函式無值和最小值,只有在改變函式定義域後,如x>0時,函式的最小值為2。可見定義域對函式的值域或最值的影響。

3、函式的最值在實際問題中的應用

函式的最值的應用主要體現在用函式知識求解實際問題上,從文字表述上常常表現為“工程造價最低”,“利潤”或“面積(體積)(最小)”等諸多現實問題上,求解時要特別關注實際意義對自變數的制約,以便能正確求得最值。

(四)、函式的奇偶性

1、函式的奇偶性的定義:對於函式f(x),如果對於函式定義域內的任意一個x,都有f(—x)=—f(x)(或f(—x)=f(x)),那麼函式f(x)就叫做奇函式(或偶函式)。

正確理解奇函式和偶函式的定義,要注意兩點:(1)定義域在數軸上關於原點對稱是函式f(x)為奇函式或偶函式的必要不充分條件;(2)f(x)=—f(x)或f(—x)=f(x)是定義域上的恆等式。(奇偶性是函式定義域上的整體性質)。

2、奇偶函式的定義是判斷函式奇偶性的主要依據。為了便於判斷函式的奇偶性,有時需要將函式化簡或應用定義的等價形式:

注意如下結論的運用:

(1)不論f(x)是奇函式還是偶函式,f(|x|)總是偶函式;

(2)f(x)、g(x)分別是定義域D1、D2上的奇函式,那麼在D1∩D2上,f(x)+g(x)是奇函式,f(x)·g(x)是偶函式,類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

(3)奇偶函式的複合函式的奇偶性通常是偶函式;

(4)奇函式的導函式是偶函式,偶函式的導函式是奇函式。

3、有關奇偶性的幾個性質及結論

(1)一個函式為奇函式的充要條件是它的圖象關於原點對稱;一個函式為偶函式的充要條件是它的圖象關於y軸對稱

(2)如要函式的定義域關於原點對稱且函式值恆為零,那麼它既是奇函式又是偶函式。

(3)若奇函式f(x)在x=0處有意義,則f(0)=0成立。

(4)若f(x)是具有奇偶性的區間單調函式,則奇(偶)函式在正負對稱區間上的單調性是相同(反)的。

(5)若f(x)的定義域關於原點對稱,則F(x)=f(x)+f(—x)是偶函式,G(x)=f(x)—f(—x)是奇函式。

(6)奇偶性的推廣

函式y=f(x)對定義域內的任一x都有f(a+x)=f(a—x),則y=f(x)的圖象關於直線x=a對稱,即y=f(a+x)為偶函式。函式y=f(x)對定義域內的任—x都有f(a+x)=—f(a—x),則y=f(x)的圖象關於點(a,0)成中心對稱圖形,即y=f(a+x)為奇函式。

學好數學的方法

學好數學第一要養成預習的習慣。這是我多年學習數學的一個好方法,因為提前把老師要講的知識先學一遍,就知道自己哪裡不會,學的時候就有重點。當然,如果完全自學就懂更好了。

第二是書後做練習題。預習完不是目的,有時間可以把例題和課後練習題做了,檢查預習情況,如果都會做說明學會了,即使不會還能再聽老師講一遍。

第三個步驟是做老師佈置的作業,認真做。做的時候可以把解題過程直接寫在題目旁邊,比如選擇題和填空題,因為解答題有很多空白處可寫。這樣做的好處就是,老師講題時能跟上思路,不容易走神。

第四個學好數學的方法是整理錯題。每次考試結束後,總會有很多錯題,對於這些題目,我們不要以為上課聽懂了就會做了,看花容易繡花難,親手做過了才知道會不會。而且要把錯的題目對照書本去看,重新學習知識。

第五個提高數學成績的方法是查缺補漏。在做了大量習題以後,數學成績有所提高,但還是存在一些不會做的題目,我們要善於發現哪些型別的題目還存在盲區,然後逐一擊破。

下一個方法是提高數學分數段。可能數學學了一段時間,成績老是上不去,這是要總結差在哪裡?基礎題還是拔高題,然後對自己提出高要求,基礎題目爭取不丟分,然後做一些有難度的題目。

第七個數學提分方法是掌握一些數學解題思路。數學很多題目都是有固定的或者是多種解題思想的,大家要善於發現和總結,比如歸納法、分類討論法等等。

第八個學好數學的方法是“鑽”。當遇到難題百思不得其解時,學霸們的做法通常是思考一兩天,而學酥的做法則是一掃而過,其中的差別已經很明顯了,這也是成績差異的原因所在。

要想提高數學分數,最明智的做法是,考試遇到不會的題目先放過去,做完其他題目再回過頭來重新做難題。但不能連著放過去好幾道題目,那就有問題了。

最後一個提分方法就是合理安排答題時間,規定做選擇題和大題各多長時間,然後按照既定時間去做,這樣才能最有效的提高數學分數。

數學集合知識點

1、集合的含義

2、集合的中元素的三個特性:

(1)元素的確定性如:世界上最高的山

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

3、集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

注意:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集N_或N+整數集Z有理數集Q實數集R

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大

括號內表示集合的方法。{x∈R|x—3>2},{x|x—3>2}

3)語言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合

(2)無限集含有無限個元素的集合

(3)空集不含任何元素的集合例:{x|x2=—5}

數學必修五知識點總結5

1、數列概念

①數列是一種特殊的函式。其特殊性主要表現在其定義域和值域上。數列可以看作一個定義域為正整數集Nx或其有限子集{1,2,3,…,n}的函式,其中的{1,2,3,…,n}不能省略。

②用函式的觀點認識數列是重要的思想方法,一般情況下函式有三種表示方法,數列也不例外,通常也有三種表示方法:a、列表法;b、影象法;c、解析法。其中解析法包括以通項公式給出數列和以遞推公式給出數列。

③函式不一定有解析式,同樣數列也並非都有通項公式。

等差數列

1、等差數列通項公式

an=a1+(n—1)d

n=1時a1=S1

n≥2時an=Sn—Sn—1

an=kn+b(k,b為常數)推導過程:an=dn+a1—d令d=k,a1—d=b則得到an=kn+b

2、等差中項

由三個數a,A,b組成的等差數列可以堪稱最簡單的等差數列。這時,A叫做a與b的等差中項(arithmeticmean)。

有關係:A=(a+b)÷2

3、前n項和

倒序相加法推導前n項和公式:

Sn=a1+a2+a3+·····+an

=a1+(a1+d)+(a1+2d)+······+[a1+(n—1)d]①

Sn=an+an—1+an—2+······+a1

=an+(an—d)+(an—2d)+······+[an—(n—1)d]②

由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個)=n(a1+an)

∴Sn=n(a1+an)÷2

等差數列的前n項和等於首末兩項的和與項數乘積的一半:

Sn=n(a1+an)÷2=na1+n(n—1)d÷2

Sn=dn2÷2+n(a1—d÷2)

亦可得

a1=2sn÷n—an=[sn—n(n—1)d÷2]÷n

an=2sn÷n—a1

有趣的是S2n—1=(2n—1)an,S2n+1=(2n+1)an+1

4、等差數列性質

一、任意兩項am,an的關係為:

an=am+(n—m)d

它可以看作等差數列廣義的通項公式。

二、從等差數列的定義、通項公式,前n項和公式還可推出:

a1+an=a2+an—1=a3+an—2=…=ak+an—k+1,k∈Nx

三、若m,n,p,q∈Nx,且m+n=p+q,則有am+an=ap+aq

四、對任意的k∈Nx,有

Sk,S2k—Sk,S3k—S2k,…,Snk—S(n—1)k…成等差數列。

等比數列

1、等比中項

如果在a與b中間插入一個數G,使a,G,b成等比數列,那麼G叫做a與b的等比中項。

有關係:

注:兩個非零同號的實數的等比中項有兩個,它們互為相反數,所以G2=ab是a,G,b三數成等比數列的必要不充分條件。

2、等比數列通項公式

an=a1xq’(n—1)(其中首項是a1,公比是q)

an=Sn—S(n—1)(n≥2)

前n項和

當q≠1時,等比數列的前n項和的公式為

Sn=a1(1—q’n)/(1—q)=(a1—a1xq’n)/(1—q)(q≠1)

當q=1時,等比數列的前n項和的公式為

Sn=na1

3、等比數列前n項和與通項的關係

an=a1=s1(n=1)

an=sn—s(n—1)(n≥2)

4、等比數列性質

(1)若m、n、p、q∈Nx,且m+n=p+q,則am·an=ap·aq;

(2)在等比數列中,依次每k項之和仍成等比數列。

(3)從等比數列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an—1=a3·an—2=…=ak·an—k+1,k∈{1,2,…,n}

(4)等比中項:q、r、p成等比數列,則aq·ap=ar2,ar則為ap,aq等比中項。

記πn=a1·a2…an,則有π2n—1=(an)2n—1,π2n+1=(an+1)2n+1

另外,一個各項均為正數的等比數列各項取同底指數冪後構成一個等差數列;反之,以任一個正數C為底,用一個等差數列的各項做指數構造冪Can,則是等比數列。在這個意義下,我們說:一個正項等比數列與等差數列是“同構”的。

(5)等比數列前n項之和Sn=a1(1—q’n)/(1—q)

(6)任意兩項am,an的關係為an=am·q’(n—m)

(7)在等比數列中,首項a1與公比q都不為零。

注意:上述公式中a’n表示a的n次方。

數學三角形斜邊計算公式

斜邊是指直角三角形中最長的那條邊,也指不是構成直角的那條邊。在勾股定理中,斜邊稱作“弦”。

三角形斜邊長等於根號下兩直角邊的平方和,即斜邊c=√(a^2+b^2)

解答過程如下:

(1)在直角三角形中滿足勾股定理—在平面上的一個直角三角形中,兩個直角邊邊長的平方加起來等於斜邊長的平方。數學表示式:a2+b2=c2

(2)a2+b2=c2求c,因為c是一條邊,所以就是求大於0的一個根。即c=√(a2+b2)。

在幾何中,斜邊是直角三角形的最長邊,與直角相對。直角三角形的斜邊的長度可以使用畢達哥拉斯定理找到,該定理表示斜邊長度的平方等於另外兩邊長度的平方和。例如,如果其中一方的長度為3(平方,9),另一方的長度為4(平方,16),那麼它們的正方形加起來為25。斜邊的長度為平方根25,即5。

提高數學成績的竅門是什麼

找漏洞

學生如何找自己學科上的漏洞呢?主要就是要在預習時找漏洞。上課學生的學習目標明確,注意力才會集中,聽課效率才會高。除了預習,做題也是一種很好的找漏洞的方式。

多做題不等於提高分數,只有多補漏洞,才能提高分數

題目千千萬,我們是做不完的。做題的是為了掌握、鞏固知識點,如果已經掌握了,就沒有必要再做了。學生應該把時間放在補漏洞上,預習也要引起高度重視。

不要輕易放過一道錯題

對於學生錯誤的習題,教師會講評一遍,學生更正一遍之後就了事,但這種態度是不正確的。從哪裡倒下就在哪裡爬起來,“錯題是個寶,天天少不了,每天都在找,積累為大考。”這就要求學生反思三點,一、問題到底出在哪裡?二、產生錯誤的根本是什麼?三、如何做才能避免下次犯同樣的錯誤?如果每道錯題都利用好的,還怕成績不能提高嗎?

落實的關鍵是檢測和重複

落實就是硬道理。看自己補漏洞的效果如何最好的方式就是檢測,多次檢測沒有問題了,那麼這個漏洞就不上了。補漏洞也不是一次、兩次就能解決,需要一定的重複。

既要“亡羊補牢”,更要“未雨綢繆”

考試後,教師逐題分析錯題、失分原因——找漏洞;制定切實有效的改進措施——想辦法;有針對性地加強專項訓練——補漏洞。有時“亡羊補牢”已經晚了,我們更應該“未雨綢繆”。每天把學習上的問題記錄下來並解決落實好。考前的模擬測試,也是一個好辦法。

數學必修五知識點總結6

數列

1、數列的定義及數列的通項公式:

① an?f(n),數列是定義域為N

的函式f(n),當n依次取1,2,???時的一列函式值② i。歸納法

若S0?0,則an不分段;若S0?0,則an分段iii。若an?1?pan?q,則可設an?1?m?p(an?m)解得m,得等比數列?an?m?

?Sn?f(an)

iv。若Sn?f(an),先求a

1?得到關於an?1和an的遞推關係式

S?f(a)n?1?n?1?Sn?2an?1

例如:Sn?2an?1先求a1,再構造方程組:??(下減上)an?1?2an?1?2an

?Sn?1?2an?1?1

2、等差數列:

①定義:a

n?1?an=d(常數),證明數列是等差數列的重要工具。 ②通項d?0時,an為關於n的一次函式;

d>0時,an為單調遞增數列;d<0時,a

n為單調遞減數列。

n(n?1)2

③前n?na1?

d,

d?0時,Sn是關於n的不含常數項的一元二次函式,反之也成立。

④性質:ii。若?an?為等差數列,則am,am?k,am?2k,…仍為等差數列。 iii。若?an?為等差數列,則Sn,S2n?Sn,S3n?S2n,…仍為等差數列。 iv若A為a,b的等差中項,則有A?3。等比數列:

①定義:

an?1an

?q(常數),是證明數列是等比數列的重要工具。

a?b2

②通項時為常數列)。

③。前n項和

需特別注意,公比為字母時要討論。

數學必修五知識點總結7

高一年級數學必修五重點知識點

一、集合有關概念

1、集合的含義:某些指定的物件集在一起就成為一個集合,其中每一個物件叫元素.

2、集合的中元素的三個特性:

1.元素的確定性;2.元素的互異性;3.元素的無序性

說明:(1)對於一個給定的`集合,集合中的元素是確定的,任何一個物件或者是或者不是這個給定的集合的元素.

(2)任何一個給定的集合中,任何兩個元素都是不同的物件,相同的物件歸入一個集合時,僅算一個元素.

(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.

(4)集合元素的三個特性使集合本身具有了確定性和整體性.

3、集合的表示:{}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

2.集合的表示方法:列舉法與描述法.

注意啊:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集N.或N+整數集Z有理數集Q實數集R

關於屬於的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A記作aA,相反,a不屬於集合A記作a?A

列舉法:把集合中的元素一一列舉出來,然後用一個大括號括上.

描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法.用確定的條件表示某些物件是否屬於這個集合的方法.

①語言描述法:例:{不是直角三角形的三角形}

②數學式子描述法:例:不等式x-32的解集是{x?R|x-32}或{x|x-32}

高一數學必修五重點知識點

集合間的基本關係

1.包含關係子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合.

反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA

2.相等關係(55,且55,則5=5)

例項:設A={x|x2-1=0}B={-1,1}元素相同

結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B

①任何一個集合是它本身的子集

②真子集:如果AB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

③如果AB,BC,那麼AC

④如果AB同時BA那麼A=B

3.不含任何元素的集合叫做空集,記為

規定:空集是任何集合的子集,空集是任何非空集合的真子集.

三、集合的運算

1.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.

記作AB(讀作A交B),即AB={x|xA,且xB}.

2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:AB(讀作A並B),即AB={x|xA,或xB}.

3、交集與並集的性質:AA=A,A=,AB=BA,AA=A,

A=A,AB=BA.

4、全集與補集

(1)補集:設S是一個集合,A是S的一個子集(即),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或餘集)

(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集.通常用U來表示.

(3)性質:⑴CU(CUA)=A⑵(CUA)⑶(CUA)A=U

高一年級數學必修五知識點總結

【差數列的基本性質】

⑴公差為d的等差數列,各項同加一數所得數列仍是等差數列,其公差仍為d.

⑵公差為d的等差數列,各項同乘以常數k所得數列仍是等差數列,其公差為kd.

⑶若{a}、{b}為等差數列,則{a±b}與{ka+b}(k、b為非零常數)也是等差數列.

⑷對任何m、n,在等差數列{a}中有:a=a+(n-m)d,特別地,當m=1時,便得等差數列的通項公式,此式較等差數列的通項公式更具有一般性.

⑸、一般地,如果l,k,p,…,m,n,r,…皆為自然數,且l+k+p+…=m+n+r+…(兩邊的自然數個數相等),那麼當{a}為等差數列時,有:a+a+a+…=a+a+a+….

⑹公差為d的等差數列,從中取出等距離的項,構成一個新數列,此數列仍是等差數列,其公差為kd(k為取出項數之差).

⑺如果{a}是等差數列,公差為d,那麼,a,a,…,a、a也是等差數列,其公差為-d;在等差數列{a}中,a-a=a-a=md.(其中m、k、)

⑻在等差數列中,從第一項起,每一項(有窮數列末項除外)都是它前後兩項的等差中項.

⑼當公差d>0時,等差數列中的數隨項數的增大而增大;當d<0時,等差數列中的數隨項數的減少而減小;d=0時,等差數列中的數等於一個常數.

⑽設a,a,a為等差數列中的三項,且a與a,a與a的項距差之比=(≠-1),則a=.

⑴數列{a}為等差數列的充要條件是:數列{a}的前n項和S可以寫成S=an+bn的形式(其中a、b為常數).

⑵在等差數列{a}中,當項數為2n(nN)時,S-S=nd,=;當項數為(2n-1)(n)時,S-S=a,=.

⑶若數列{a}為等差數列,則S,S-S,S-S,…仍然成等差數列,公差為.

⑷若兩個等差數列{a}、{b}的前n項和分別是S、T(n為奇數),則=.

⑸在等差數列{a}中,S=a,S=b(n>m),則S=(a-b).

⑹等差數列{a}中,是n的一次函式,且點(n,)均在直線y=x+(a-)上.

⑺記等差數列{a}的前n項和為S.①若a>0,公差d<0,則當a≥0且a≤0時,S;②若a<0,公差d>0,則當a≤0且a≥0時,S最小.

數學必修五知識點總結8

【差數列的基本性質】

⑴公差為d的等差數列,各項同加一數所得數列仍是等差數列,其公差仍為d。

⑵公差為d的等差數列,各項同乘以常數k所得數列仍是等差數列,其公差為kd。

⑶若{a}、{b}為等差數列,則{a±b}與{ka+b}(k、b為非零常數)也是等差數列。

⑷對任何m、n,在等差數列{a}中有:a=a+(n—m)d,特別地,當m=1時,便得等差數列的通項公式,此式較等差數列的通項公式更具有一般性、

⑸、一般地,如果l,k,p,…,m,n,r,…皆為自然數,且l+k+p+…=m+n+r+…(兩邊的自然數個數相等),那麼當{a}為等差數列時,有:a+a+a+…=a+a+a+…。

⑹公差為d的等差數列,從中取出等距離的項,構成一個新數列,此數列仍是等差數列,其公差為kd(k為取出項數之差)。

⑺如果{a}是等差數列,公差為d,那麼,a,a,…,a、a也是等差數列,其公差為—d;在等差數列{a}中,a—a=a—a=md、(其中m、k、)

⑻在等差數列中,從第一項起,每一項(有窮數列末項除外)都是它前後兩項的等差中項。

⑼當公差d>0時,等差數列中的數隨項數的增大而增大;當d<0時,等差數列中的數隨項數的減少而減小;d=0時,等差數列中的數等於一個常數。

⑽設a,a,a為等差數列中的三項,且a與a,a與a的項距差之比=(≠—1),則a=。

【等差數列前n項和公式S的基本性質】

⑴數列{a}為等差數列的充要條件是:數列{a}的前n項和S可以寫成S=an+bn的形式(其中a、b為常數)。

⑵在等差數列{a}中,當項數為2n(nN)時,S—S=nd,=;當項數為(2n—1)(n)時,S—S=a,=。

⑶若數列{a}為等差數列,則S,S—S,S—S,…仍然成等差數列,公差為、

⑷若兩個等差數列{a}、{b}的前n項和分別是S、T(n為奇數),則=。

⑸在等差數列{a}中,S=a,S=b(n>m),則S=(a—b)。

⑹等差數列{a}中,是n的一次函式,且點(n,)均在直線y=x+(a—)上。

⑺記等差數列{a}的前n項和為S、①若a>0,公差d<0,則當a≥0且a≤0時,S;②若a<0,公差d>0,則當a≤0且a≥0時,S最小。

【等比數列的基本性質】

⑴公比為q的等比數列,從中取出等距離的項,構成一個新數列,此數列仍是等比數列,其公比為q(m為等距離的項數之差)。

⑵對任何m、n,在等比數列{a}中有:a=a·q,特別地,當m=1時,便得等比數列的通項公式,此式較等比數列的通項公式更具有普遍性。

⑶一般地,如果t,k,p,…,m,n,r,…皆為自然數,且t+k,p,…,m+…=m+n+r+…(兩邊的自然數個數相等),那麼當{a}為等比數列時,有:a、a、a、…=a、a、a、…。

⑷若{a}是公比為q的等比數列,則{|a|}、{a}、{ka}、{}也是等比數列,其公比分別為|q|}、{q}、{q}、{}。

⑸如果{a}是等比數列,公比為q,那麼,a,a,a,…,a,…是以q為公比的等比數列。

⑹如果{a}是等比數列,那麼對任意在n,都有a·a=a·q>0。

⑺兩個等比數列各對應項的積組成的數列仍是等比數列,且公比等於這兩個數列的公比的積。

⑻當q>1且a>0或00且01時,等比數列為遞減數列;當q=1時,等比數列為常數列;當q<0時,等比數列為擺動數列。

【集合】

一、集合有關概念

1、集合的含義:某些指定的物件集在一起就成為一個集合,其中每一個物件叫元素。

2、集合的中元素的三個特性:

1、元素的確定性;2、元素的互異性;3、元素的無序性

說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個物件或者是或者不是這個給定的集合的元素。

(2)任何一個給定的集合中,任何兩個元素都是不同的物件,相同的物件歸入一個集合時,僅算一個元素。

(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個特性使集合本身具有了確定性和整體性。

3、集合的表示:{}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

1、用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

2、集合的表示方法:列舉法與描述法。

注意啊:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集N或N+整數集Z有理數集Q實數集R

關於屬於的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A記作aA,相反,a不屬於集合A記作a?A

列舉法:把集合中的元素一一列舉出來,然後用一個大括號括上、

描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法、用確定的條件表示某些物件是否屬於這個集合的方法。

①語言描述法:例:{不是直角三角形的三角形}

②數學式子描述法:例:不等式x—32的解集是{x?R|x—32}或{x|x—32}

4、集合的分類:

1、有限集含有有限個元素的集合

2、無限集含有無限個元素的集合

3、空集不含任何元素的集合例:{x|x2=—5}

二、集合間的基本關係

1、包含關係子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA

2、相等關係(55,且55,則5=5)

例項:設A={x|x2—1=0}B={—1,1}元素相同

結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B

①任何一個集合是它本身的子集、AA

②真子集:如果AB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

③如果AB,BC,那麼AC

④如果AB同時BA那麼A=B

3、不含任何元素的集合叫做空集,記為

規定:空集是任何集合的子集,空集是任何非空集合的真子集、

三、集合的運算

1、交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集。

記作AB(讀作A交B),即AB={x|xA,且xB}、

2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集、記作:AB(讀作A並B),即AB={x|xA,或xB}、

3、交集與並集的性質:AA=A,A=,AB=BA,AA=A,A=A,AB=BA。

4、全集與補集

(1)補集:設S是一個集合,A是S的一個子集(即),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或餘集)

(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集、通常用U來表示。

(3)性質:⑴CU(CUA)=A⑵(CUA)⑶(CUA)A=U

【立體幾何】

柱、錐、臺、球的結構特徵

稜柱

定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標準分為三稜柱、四稜柱、五稜柱等。

表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱。

幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側稜平行且相等;平行於底面的截面是與底面全等的多邊形。

稜錐

定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標準分為三稜錐、四稜錐、五稜錐等

表示:用各頂點字母,如五稜錐

幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。

稜臺

定義:用一個平行於稜錐底面的平面去截稜錐,截面和底面之間的部分。

分類:以底面多邊形的邊數作為分類的標準分為三稜態、四稜臺、五稜臺等

表示:用各頂點字母,如五稜臺

幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側稜交於原稜錐的頂點

圓柱

定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體。

幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

圓錐

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一週所成的曲面所圍成的幾何體。

幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。

圓臺

定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。

球體

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一週形成的幾何體

幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。

NO、2空間幾何體的三檢視

定義三檢視

定義三檢視:正檢視(光線從幾何體的前面向後面正投影);側檢視(從左向右)、俯檢視(從上向下)

注:正檢視反映了物體上下、左右的位置關係,即反映了物體的高度和長度;

俯檢視反映了物體左右、前後的位置關係,即反映了物體的長度和寬度;

側檢視反映了物體上下、前後的位置關係,即反映了物體的高度和寬度。

NO、3空間幾何體的直觀圖——斜二測畫法

斜二測畫法

斜二測畫法特點

①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

直線與方程

直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值範圍是0°≤α<180°

直線的斜率

定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

過兩點的直線的斜率公式:

(注意下面四點)

(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;

(3)以後求斜率可不通過傾斜角而由直線上兩點的座標直接求得;

(4)求直線的傾斜角可由直線上兩點的座標先求斜率得到。

冪函式

定義

形如y=x^a(a為常數)的函式,即以底數為自變數冪為因變數,指數為常量的函式稱為冪函式。

定義域和值域

當a為不同的數值時,冪函式的定義域的不同情況如下:如果a為任意實數,則函式的定義域為大於0的所有實數;如果a為負數,則x肯定不能為0,不過這時函式的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函式的定義域為大於0的所有實數;如果同時q為奇數,則函式的定義域為不等於0的所有實數。當x為不同的數值時,冪函式的值域的不同情況如下:在x大於0時,函式的值域總是大於0的實數。在x小於0時,則只有同時q為奇數,函式的值域為非零的實數。而只有a為正數,0才進入函式的值域

性質

對於a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函式的定義域是R,如果q是偶數,函式的定義域是[0,+∞)。當指數n是負整數時,設a=—k,則x=1/(x^k),顯然x≠0,函式的定義域是(—∞,0)∪(0,+∞)、因此可以看到x所受到的限制來源於兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那麼我們就可以知道:

排除了為0與負數兩種可能,即對於x>0,則a可以是任意實數;

排除了為0這種可能,即對於x<0和x>0的所有實數,q不能是偶數;

排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。

指數函式

指數函式

(1)指數函式的定義域為所有實數的集合,這裡的前提是a大於0,對於a不大於0的情況,則必然使得函式的定義域不存在連續的區間,因此我們不予考慮。

(2)指數函式的值域為大於0的實數集合。

(3)函式圖形都是下凹的。

(4)a大於1,則指數函式單調遞增;a小於1大於0,則為單調遞減的。

(5)可以看到一個顯然的規律,就是當a從0趨向於無窮大的過程中(當然不能等於0),函式的曲線從分別接近於Y軸與X軸的正半軸的單調遞減函式的位置,趨向分別接近於Y軸的正半軸與X軸的負半軸的單調遞增函式的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

(6)函式總是在某一個方向上無限趨向於X軸,永不相交。

(7)函式總是通過(0,1)這點。

(8)顯然指數函式無界。

奇偶性

定義

一般地,對於函式f(x)

(1)如果對於函式定義域內的任意一個x,都有f(—x)=—f(x),那麼函式f(x)就叫做奇函式。

(2)如果對於函式定義域內的任意一個x,都有f(—x)=f(x),那麼函式f(x)就叫做偶函式。

(3)如果對於函式定義域內的任意一個x,f(—x)=—f(x)與f(—x)=f(x)同時成立,那麼函式f(x)既是奇函式又是偶函式,稱為既奇又偶函式。

(4)如果對於函式定義域內的任意一個x,f(—x)=—f(x)與f(—x)=f(x)都不能成立,那麼函式f(x)既不是奇函式又不是偶函式,稱為非奇非偶函式。

數學必修五知識點總結9

一、集合有關概念

1. 集合的含義

2. 集合的中元素的三個特性:

(1) 元素的確定性,

(2) 元素的互異性,

(3) 元素的無序性,

3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

(1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(2) 集合的表示方法:列舉法與描述法。

? 注意:常用數集及其記法:

非負整數集(即自然數集) 記作:N

正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R

1) 列舉法:{a,b,c……}

2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

3) 語言描述法:例:{不是直角三角形的三角形}

4) Venn圖:

4、集合的分類:

(1) 有限集 含有有限個元素的集合

(2) 無限集 含有無限個元素的集合

(3) 空集 不含任何元素的集合 例:{x|x2=-5}

二、集合間的基本關係

1.“包含”關係—子集

注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A

2.“相等”關係:A=B (5≥5,且5≤5,則5=5)

例項:設 A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

即:① 任何一個集合是它本身的子集。A?A

②真子集:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A)

③如果 A?B, B?C ,那麼 A?C

④ 如果A?B 同時 B?A 那麼A=B

3. 不含任何元素的集合叫做空集,記為Φ

規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

? 有n個元素的集合,含有2n個子集,2n-1個真子集

三、集合的運算

運算型別 交 集 並 集 補 集

定 義 由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.

由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:A B(讀作‘A並B’),即A B ={x|x A,或x B}).

設S是一個集合,A是S的一個子集,由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或餘集)

二、函式的有關概念

1.函式的概念:設A、B是非空的數集,如果按照某個確定的對應關係f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函式.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值範圍A叫做函式的定義域;與x的值相對應的y值叫做函式值,函式值的集合{f(x)| x∈A }叫做函式的值域.

注意:

1.定義域:能使函式式有意義的實數x的集合稱為函式的定義域。

求函式的定義域時列不等式組的主要依據是:

(1)分式的分母不等於零;

(2)偶次方根的被開方數不小於零;

(3)對數式的真數必須大於零;

(4)指數、對數式的底必須大於零且不等於1.

(5)如果函式是由一些基本函式通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.

(6)指數為零底不可以等於零,

(7)實際問題中的函式的定義域還要保證實際問題有意義.

相同函式的判斷方法:①表示式相同(與表示自變數和函式值的字母無關);②定義域一致 (兩點必須同時具備)

2.值域 : 先考慮其定義域

(1)觀察法

(2)配方法

(3)代換法

3. 函式圖象知識歸納

(1)定義:在平面直角座標系中,以函式 y=f(x) , (x∈A)中的x為橫座標,函式值y為縱座標的點P(x,y)的集合C,叫做函式 y=f(x),(x ∈A)的圖象.C上每一點的座標(x,y)均滿足函式關係y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為座標的點(x,y),均在C上 .

(2) 畫法

A、 描點法:

B、 圖象變換法

常用變換方法有三種

1) 平移變換

2) 伸縮變換

3) 對稱變換

4.區間的概念

(1)區間的分類:開區間、閉區間、半開半閉區間

(2)無窮區間

(3)區間的數軸表示.

5.對映

一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A B為從集合A到集合B的一個對映。記作f:A→B

6.分段函式

(1)在定義域的不同部分上有不同的解析表示式的函式。

(2)各部分的自變數的取值情況.

(3)分段函式的定義域是各段定義域的交集,值域是各段值域的並集.

補充:複合函式

如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的複合函式。

二.函式的性質

1.函式的單調性(區域性性質)

(1)增函式

設函式y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1

如果對於區間D上的任意兩個自變數的值x1,x2,當x1f(x2),那麼就說f(x)在這個區間上是減函式.區間D稱為y=f(x)的單調減區間.

注意:函式的單調性是函式的區域性性質;

(2) 圖象的特點

如果函式y=f(x)在某個區間是增函式或減函式,那麼說函式y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函式的圖象從左到右是上升的,減函式的圖象從左到右是下降的.

(3).函式單調區間與單調性的判定方法

(A) 定義法:

○1 任取x1,x2∈D,且x1

○2 作差f(x1)-f(x2);

○3 變形(通常是因式分解和配方);

○4 定號(即判斷差f(x1)-f(x2)的正負);

○5 下結論(指出函式f(x)在給定的區間D上的單調性).

(B)圖象法(從圖象上看升降)

(C)複合函式的單調性

複合函式f[g(x)]的單調性與構成它的函式u=g(x),y=f(u)的單調性密切相關,其規律:“同增異減”

注意:函式的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其並集.

8.函式的奇偶性(整體性質)

(1)偶函式

一般地,對於函式f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函式.

(2).奇函式

一般地,對於函式f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函式.

(3)具有奇偶性的函式的圖象的特徵

偶函式的圖象關於y軸對稱;奇函式的圖象關於原點對稱.

利用定義判斷函式奇偶性的步驟:

○1首先確定函式的定義域,並判斷其是否關於原點對稱;

○2確定f(-x)與f(x)的關係;

○3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函式;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函式.

(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;

(3)利用定理,或藉助函式的圖象判定 .

9、函式的解析表示式

(1).函式的解析式是函式的一種表示方法,要求兩個變數之間的函式關係時,一是要求出它們之間的對應法則,二是要求出函式的定義域.

(2)求函式的解析式的主要方法有:

1) 湊配法

2) 待定係數法

3) 換元法

4) 消參法

10.函式最大(小)值(定義見課本p36頁)

○1 利用二次函式的性質(配方法)求函式的最大(小)值

○2 利用圖象求函式的最大(小)值

○3 利用函式單調性的判斷函式的最大(小)值:

如果函式y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函式y=f(x)在x=b處有最大值f(b);

如果函式y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函式y=f(x)在x=b處有最小值f(b);

數學必修五知識點總結10

(一)解三角形:

1、正弦定理:在中,、、分別為角、、的對邊,,則有

(為的外接圓的半徑)

2、正弦定理的變形公式:①,,;

②,,;③;

3、三角形面積公式:.

4、餘弦定理:在中,有,推論:

(二)數列:

1.數列的有關概念:

(1)數列:按照一定次序排列的一列數。數列是有序的。數列是定義在自然數N_它的有限子集{1,2,3,…,n}上的函式。

(2)通項公式:數列的第n項an與n之間的函式關係用一個公式來表示,這個公式即是該數列的通項公式。如:。

(3)遞推公式:已知數列{an}的第1項(或前幾項),且任一項an與他的前一項an-1(或前幾項)可以用一個公式來表示,這個公式即是該數列的遞推公式。

如:。

2.數列的表示方法:

(1)列舉法:如1,3,5,7,9,…(2)圖象法:用(n,an)孤立點表示。

(3)解析法:用通項公式表示。(4)遞推法:用遞推公式表示。

3.數列的分類:

4.數列{an}及前n項和之間的關係:

熱門標籤